Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Electrochemical Engineering
  Großes Bild
 
Electrochemical Engineering
von: Thomas F. Fuller, John N. Harb
Wiley, 2018
ISBN: 9781119446583
437 Seiten, Download: 43578 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 5  
  Copyright Page 6  
  Contents 7  
  Preface 11  
  List of Symbols 13  
  About the Companion Website 17  
  Chapter 1: Introduction and Basic Principles 20  
     1.1 Electrochemical Cells 20  
     1.2 Characteristics of Electrochemical Reactions 21  
     1.3 Importance of ElectrochemicalSystems 23  
     1.4 Scientific Units, Constants, Conventions 24  
     1.5 Faraday’s Law 25  
     1.6 Faradaic Efficiency 27  
     1.7 Current Density 28  
     1.8 Potential and Ohm’s Law 28  
     1.9 Electrochemical Systems: Example 29  
     Closure 32  
     Further Reading 32  
     Problems 32  
  Chapter 2: Cell Potential and Thermodynamics 34  
     2.1 Electrochemical Reactions 34  
     2.2 Cell Potential 34  
     2.3 Expression for Cell Potential 36  
     2.4 Standard Potentials 37  
     2.5 Effect of Temperature on StandardPotential 40  
     2.6 Simplified Activity Correction 41  
     2.7 Use of the Cell Potential 43  
     2.8 Equilibrium Constants 44  
     2.9 Pourbaix Diagrams 44  
     2.10 Cells with a Liquid Junction 46  
     2.11 Reference Electrodes 46  
     2.12 Equilibrium at Electrode Interface 49  
     2.13 Potential in Solution Due to Charge: Debye–Hückel Theory 50  
     2.14 Activities and Activity Coefficients 52  
     2.15 Estimation of Activity Coefficients 54  
     Closure 55  
     Further Reading 55  
     Problems 55  
  Chapter 3: Electrochemical Kinetics 60  
     3.1 Double Layer 60  
     3.2 Impact of Potential on Reaction Rate 61  
     3.3 Use of the Butler–Volmer Kinetic Expression 65  
     3.4 Reaction Fundamentals 68  
     3.5 Simplified Forms of the Butler–VolmerEquation 69  
     3.6 Direct Fitting of the Butler–VolmerEquation 71  
     3.7 The Influence of Mass Transfer on the Reaction Rate 73  
     3.8 Use of Kinetic Expressions in Full Cells 74  
     3.9 Current Efficiency 77  
     Closure 77  
     Further Reading 78  
     Problems 78  
  Chapter 4: Transport 82  
     4.1 Fick’s Law 82  
     4.2 Nernst–Planck Equation 82  
     4.3 Conservation of Material 84  
     4.4 Transference Numbers, Mobilities, and Migration 90  
     4.5 Convective Mass Transfer 94  
     4.6 Concentration Overpotential 98  
     4.7 Current Distribution 101  
     4.8 Membrane Transport 105  
     Closure 107  
     Further Reading 107  
     Problems 107  
  Chapter 5: Electrode Structures and Configurations 112  
     5.1 Mathematical Description of Porous Electrodes 113  
     5.2 Characterization of Porous Electrodes 115  
     5.3 Impact of Porous Electrode onTransport 116  
     5.4 Current Distributions in Porous Electrodes 117  
     5.5 The Gas–Liquid Interface in Porous Electrodes 121  
     5.6 Three-Phase Electrodes 122  
     5.7 Electrodes with Flow 124  
     Closure 127  
     Further Reading 127  
     Problems 127  
  Chapter 6: Electroanalytical Techniques and Analysis of Electrochemical Systems 132  
     6.1 Electrochemical Cells, Instrumentation, and Some Practical Issues 132  
     6.2 Overview 134  
     6.3 Step Change in Potential or Current for a Semi-Infinite Planar Electrode in a Stagnant Electrolyte 135  
     6.4 Electrode Kinetics and Double-Layer Charging 137  
     6.5 Cyclic Voltammetry 141  
     6.6 Stripping Analyses 146  
     6.7 Electrochemical Impedance 148  
     6.8 Rotating Disk Electrodes 155  
     6.9 iR Compensation 158  
     6.10 Microelectrodes 160  
     Closure 164  
     Further Reading 164  
     Problems 164  
  Chapter 7: Battery Fundamentals 170  
     7.1 Components of a Cell 170  
     7.2 Classification of Batteries and Cell Chemistries 171  
     7.3 Theoretical Capacity and State of Charge 175  
     7.4 Cell Characteristics and Electrochemical Performance 177  
     7.5 Ragone Plots 182  
     7.6 Heat Generation 183  
     7.7 Efficiency of Secondary Cells 185  
     7.8 Charge Retention and Self-Discharge 186  
     7.9 Capacity Fade in Secondary Cells 187  
     Closure 188  
     Further Reading 188  
     Problems 188  
  Chapter 8: Battery Applications: Cell and Battery Pack Design 194  
     8.1 Introduction to Battery Design 194  
     8.2 Battery Layout Using a Specific Cell Design 195  
     8.3 Scaling of Cells to Adjust Capacity 197  
     8.4 Electrode and Cell Design to Achieve Rate Capability 200  
     8.5 Cell Construction 202  
     8.6 Charging of Batteries 203  
     8.7 Use of Resistance to Characterize Battery Peformance 204  
     8.8 Battery Management 205  
     8.9 Thermal Management Systems 207  
     8.10 Mechanical Considerations 209  
     Closure 210  
     Further Reading 210  
     Problems 210  
  Chapter 9: Fuel-Cell Fundamentals 214  
     9.1 Introduction 214  
     9.2 Types of Fuel Cells 216  
     9.3 Current–Voltage Characteristics and Polarizations 217  
     9.4 Effect of Operating Conditions andMaximum Power 221  
     9.5 Electrode Structure 224  
     9.6 Proton-Exchange Membrane (PEM) Fuel Cells 225  
     9.7 Solid Oxide Fuel Cells 230  
     Closure 234  
     Further Reading 234  
     Problems 235  
  Chapter 10: Fuel-Cell Stack and System Design 242  
     10.1 Introduction and Overview of Systems Analysis 242  
     10.2 Basic Stack Design Concepts 245  
     10.3 Cell Stack Configurations 247  
     10.4 Basic Construction and Components 248  
     10.5 Utilization of Oxidant and Fuel 250  
     10.6 Flow-Field Design 254  
     10.7 Water and Thermal Management 257  
     10.8 Structural–MechanicalConsiderations 260  
     10.9 Case Study 264  
     Closure 266  
     Further Reading 266  
     Problems 266  
  Chapter 11: Electrochemical Double-Layer Capacitors 270  
     11.1 Capacitor Introduction 270  
     11.2 Electrical Double-Layer Capacitance 272  
     11.3 Current–Voltage Relationship for Capacitors 278  
     11.4 Porous EDLC Electrodes 280  
     11.5 Impedance Analysis of EDLCs 282  
     11.6 Full Cell EDLC Analysis 285  
     11.7 Power and Energy Capabilities 286  
     11.8 Cell Design, Practical Operation, andElectrochemical Capacitor Performance 288  
     11.9 Pseudo-Capacitance 290  
     Closure 292  
     Further Reading 292  
     Problems 292  
  Chapter 12: Energy Storage and Conversion for Hybrid and Electrical Vehicles 296  
     12.1 Why Electric and Hybrid-ElectricSystems? 296  
     12.2 Driving Schedules and Power Demand in Vehicles 298  
     12.3 Regenerative Braking 300  
     12.4 Battery Electrical Vehicle 301  
     12.5 Hybrid Vehicle Architectures 303  
     12.6 Start–Stop Hybrid 304  
     12.7 Batteries for Full-Hybrid Electric Vehicles 306  
     12.8 Fuel-Cell Hybrid Systems for Vehicles 310  
     Closure 312  
     Further Reading 313  
     Problems 313  
     Appendix: Primer on Vehicle Dynamics 314  
  Chapter 13: Electrodeposition 318  
     13.1 Overview 318  
     13.2 Faraday’s Law and Deposit Thickness 319  
     13.3 Electrodeposition Fundamentals 319  
     13.4 Formation of Stable Nuclei 322  
     13.5 Nucleation Rates 324  
     13.6 Growth of Nuclei 327  
     13.7 Deposit Morphology 329  
     13.8 Additives 330  
     13.9 Impact of Current Distribution 331  
     13.10 Impact of Side Reactions 333  
     13.11 Resistive Substrates 335  
     Closure 338  
     Further Reading 338  
     Problems 338  
  Chapter 14: Industrial Electrolysis, Electrochemical Reactors, and Redox-Flow Batteries 342  
     14.1 Overview of Industrial Electrolysis 342  
     14.2 Performance Measures 343  
     14.3 Voltage Losses and the Polarization Curve 347  
     14.4 Design of Electrochemical Reactors for Industrial Applications 350  
     14.5 Examples of Industrial Electrolytic Processes 356  
     14.6 Thermal Management and Cell Operation 360  
     14.7 Electrolytic Processes for a Sustainable Future 362  
     14.8 Redox-Flow Batteries 367  
     Closure 369  
     Further Reading 369  
     Problems 369  
  Chapter 15: Semiconductor Electrodes and Photoelectrochemical Cells 374  
     15.1 Semiconductor Basics 374  
     15.2 Energy Scales 377  
     15.3 Semiconductor–Electrolyte Interface 379  
     15.4 Current Flow in the Dark 382  
     15.5 Light Absorption 385  
     15.6 Photoelectrochemical Effects 387  
     15.7 Open-Circuit Voltage for Illuminated Electrodes 388  
     15.8 Photo-Electrochemical Cells 389  
     Closure 394  
     Further Reading 394  
     Problems 394  
  Chapter 16: Corrosion 398  
     16.1 Corrosion Fundamentals 398  
     16.2 Thermodynamics of Corrosion Systems 399  
     16.3 Corrosion Rate for Uniform Corrosion 402  
     16.4 Localized Corrosion 409  
     16.5 Corrosion Protection 413  
     Closure 418  
     Further Reading 418  
     Problems 418  
  Appendix A: Electrochemical Reactions and Standard Potentials 422  
  Appendix B: Fundamental Constants 423  
  Appendix C: Thermodynamic Data 424  
  Appendix D: Mechanics of Materials 427  
  Index 432  
  End User License Agreement 437  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz