Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Recommender Systems Handbook  
Recommender Systems Handbook
von: Francesco Ricci, Lior Rokach, Bracha Shapira, Paul B. Kantor
Springer-Verlag, 2010
ISBN: 9780387858203
848 Seiten, Download: 21766 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  List of Contributors 1  
  Chapter 1 Introduction to Recommender Systems Handbook 28  
     1.1 Introduction 28  
     1.2 Recommender Systems Function 31  
     1.3 Data and Knowledge Sources 34  
     1.4 Recommendation Techniques 37  
     1.5 Application and Evaluation 41  
     1.6 Recommender Systems and Human Computer Interaction 44  
        1.6.1 Trust, Explanations and Persuasiveness 45  
        1.6.2 Conversational Systems 46  
        1.6.3 Visualization 48  
     1.7 Recommender Systems as a Multi-Disciplinary Field 48  
     1.8 Emerging Topics and Challenges 50  
        1.8.1 Emerging Topics Discussed in the Handbook 50  
        1.8.2 Challenges 53  
     References 56  
  Part IBasic Techniques 63  
     Chapter 2 Data Mining Methods for RecommenderSystems 64  
        2.1 Introduction 64  
        2.2 Data Preprocessing 65  
           2.2.1 Similarity Measures 66  
           2.2.2 Sampling 67  
           2.2.3 Reducing Dimensionality 69  
              2.2.3.1 Principal Component Analysis 69  
              2.2.3.2 Singular Value Decomposition 70  
           2.2.4 Denoising 72  
        2.3 Classification 73  
           2.3.1 Nearest Neighbors 73  
           2.3.2 Decision Trees 75  
           2.3.3 Ruled-based Classifiers 76  
           2.3.4 Bayesian Classifiers 77  
           2.3.5 Artificial Neural Networks 79  
           2.3.6 Support Vector Machines 81  
           2.3.7 Ensembles of Classifiers 83  
           2.3.8 Evaluating Classifiers 84  
        2.4 Cluster Analysis 86  
           2.4.1 k-Means 87  
           2.4.2 Alternatives to k-means 88  
        2.5 Association Rule Mining 89  
        2.6 Conclusions 91  
        Acknowledgments 92  
        References 92  
     Chapter 3 Content-based Recommender Systems: State of the Art and Trends 97  
        3.1 Introduction 98  
        3.2 Basics of Content-based Recommender Systems 99  
           3.2.1 A High Level Architecture of Content-based Systems 99  
           3.2.2 Advantages and Drawbacks of Content-based Filtering 102  
        3.3 State of the Art of Content-based Recommender Systems 103  
           3.3.1 Item Representation 104  
              3.3.1.1 Keyword-based Vector Space Model 105  
              3.3.1.2 Review of Keyword-based Systems 106  
              3.3.1.3 Semantic Analysis by using Ontologies 109  
              3.3.1.4 Semantic Analysis by using Encyclopedic Knowledge Sources 112  
           3.3.2 Methods for Learning User Profiles 114  
              3.3.2.1 Probabilistic Methods and Na¨?ve Bayes 115  
              3.3.2.2 Relevance Feedback and Rocchio’s Algorithm 116  
              3.3.2.3 Other Methods 117  
        3.4 Trends and Future Research 118  
           3.4.1 The Role of User Generated Content in the Recommendation Process 118  
              3.4.1.1 Social Tagging Recommender Systems 119  
           3.4.2 Beyond Over-specializion: Serendipity 120  
        3.5 Conclusions 123  
        References 124  
     Chapter 4 A Comprehensive Survey of Neighborhood-based Recommendation Methods 130  
        4.1 Introduction 130  
           4.1.1 Formal Definition of the Problem 131  
           4.1.2 Overview of Recommendation Approaches 133  
              4.1.2.1 Content-based approaches 133  
              4.1.2.2 Collaborative filtering approaches 134  
           4.1.3 Advantages of Neighborhood Approaches 135  
           4.1.4 Objectives and Outline 136  
        4.2 Neighborhood-based Recommendation 137  
           4.2.1 User-based Rating Prediction 138  
           4.2.2 User-based Classification 139  
           4.2.3 Regression VS Classification 140  
           4.2.4 Item-based Recommendation 140  
           4.2.5 User-based VS Item-based Recommendation 141  
        4.3 Components of Neighborhood Methods 143  
           4.3.1 Rating Normalization 144  
              4.3.1.1 Mean-centering 144  
              4.3.1.2 Z-score normalization 145  
              4.3.1.3 Choosing a normalization scheme 146  
           4.3.2 Similarity Weight Computation 147  
              4.3.2.1 Correlation-based similarity 147  
              4.3.2.2 Other similarity measures 148  
              4.3.2.3 Accounting for significance 150  
              4.3.2.4 Accounting for variance 151  
           4.3.3 Neighborhood Selection 152  
              4.3.3.1 Pre-filtering of neighbors 152  
              4.3.3.2 Neighbors in the predictions 153  
        4.4 Advanced Techniques 154  
           4.4.1 Dimensionality Reduction Methods 155  
              4.4.1.1 Decomposing the rating matrix 155  
              4.4.1.2 Decomposing the similarity matrix 157  
           4.4.2 Graph-based Methods 158  
              4.4.2.1 Path-based similarity 159  
              4.4.2.2 Random walk similarity 160  
        4.5 Conclusion 162  
        References 163  
     Chapter 5Advances in Collaborative Filtering 168  
        5.1 Introduction 168  
        5.2 Preliminaries 170  
           5.2.1 Baseline predictors 171  
           5.2.2 The Netflix data 172  
           5.2.3 Implicit feedback 173  
        5.3 Matrix factorization models 174  
           5.3.1 SVD 174  
           5.3.2 SVD++ 176  
           5.3.3 Time-aware factor model 177  
              5.3.3.1 Time changing baseline predictors 177  
              5.3.3.2 Time changing factor model 181  
           5.3.4 Comparison 182  
              5.3.4.1 Predicting future days 183  
           5.3.5 Summary 183  
        5.4 Neighborhood models 184  
           5.4.1 Similarity measures 185  
           5.4.2 Similarity-based interpolation 186  
           5.4.3 Jointly derived interpolation weights 188  
              5.4.3.1 Formal model 188  
              5.4.3.2 Computational issues 190  
           5.4.4 Summary 191  
        5.5 Enriching neighborhood models 191  
           5.5.1 A global neighborhood model 192  
              5.5.1.1 Building the model 192  
              5.5.1.2 Parameter Estimation 194  
              5.5.1.3 Comparison of accuracy 195  
           5.5.2 A factorized neighborhood model 196  
              5.5.2.1 Factoring item-item relationships 197  
              5.5.2.2 A user-user model 200  
           5.5.3 Temporal dynamics at neighborhood models 203  
           5.5.4 Summary 205  
        5.6 Between neighborhood and factorization 205  
        References 207  
     Chapter 6Developing Constraint-based Recommenders 210  
        6.1 Introduction 210  
        6.2 Development of Recommender Knowledge Bases 214  
        6.3 User Guidance in Recommendation Processes 217  
        6.4 Calculating Recommendations 226  
        6.5 Experiences from Projects and Case Studies 228  
        6.6 Future Research Issues 230  
        6.7 Summary 235  
        References 235  
     Chapter 7Context-Aware Recommender Systems 239  
        7.1 Introduction and Motivation 240  
        7.2 Context in Recommender Systems 241  
           7.2.1 What is Context? 241  
           7.2.2 Modeling Contextual Information in Recommender Systems 245  
           7.2.3 Obtaining Contextual Information 250  
        7.3 Paradigms for Incorporating Context in Recommender Systems 252  
           7.3.1 Contextual Pre-Filtering 255  
           7.3.2 Contextual Post-Filtering 259  
           7.3.3 Contextual Modeling 260  
              7.3.3.1 Heuristic-Based Approaches 261  
              7.3.3.2 Model-Based Approaches 262  
        7.4 Combining Multiple Approaches 265  
           7.4.1 Case Study of Combining Multiple Pre-Filters: Algorithms 266  
           7.4.2 Case Study of Combining Multiple Pre-Filters: ExperimentalResults 267  
        7.5 Additional Issues in Context-Aware Recommender Systems 269  
        7.6 Conclusions 271  
        Acknowledgements 272  
        References 272  
  Part IIApplications and Evaluation of RSs 276  
     Chapter 8Evaluating Recommendation Systems 277  
        8.1 Introduction 278  
        8.2 Experimental Settings 280  
           8.2.1 Offline Experiments 281  
              8.2.1.1 Data sets for offline experiments 281  
              8.2.1.2 Simulating user behavior 282  
              8.2.1.3 More complex user modeling 283  
           8.2.2 User Studies 283  
              8.2.2.1 Advantages and Disadvantages 284  
              8.2.2.2 Between vs.Within Subjects 285  
              8.2.2.3 Variable Counter Balance 286  
              8.2.2.4 Questionnaires 286  
           8.2.3 Online Evaluation 286  
           8.2.4 Drawing Reliable Conclusions 287  
              8.2.4.1 Confidence and p-values 288  
              8.2.4.2 Paired Results 288  
              8.2.4.3 Unpaired Results 289  
              8.2.4.4 Multiple tests 290  
              8.2.4.5 Confidence Intervals 291  
        8.3 Recommendation System Properties 291  
           8.3.1 User Preference 292  
           8.3.2 Prediction Accuracy 293  
              8.3.2.1 Measuring Ratings Prediction Accuracy 293  
              8.3.2.2 Measuring Usage Prediction 294  
              8.3.2.3 Ranking Measures 297  
           8.3.3 Coverage 301  
              8.3.3.1 Item Space Coverage 302  
              8.3.3.2 User Space Coverage 302  
              8.3.3.3 Cold Start 303  
           8.3.4 Confidence 303  
           8.3.5 Trust 305  
           8.3.6 Novelty 305  
           8.3.7 Serendipity 306  
           8.3.8 Diversity 308  
           8.3.9 Utility 309  
           8.3.10 Risk 310  
           8.3.11 Robustness 310  
           8.3.12 Privacy 311  
           8.3.13 Adaptivity 312  
           8.3.14 Scalability 313  
        8.4 Conclusion 313  
        References 314  
     Chapter 9 A Recommender System for an IPTV Service Provider: a Real Large-Scale ProductionEnvironment 318  
        9.1 Introduction 318  
        9.2 IPTV Architecture 320  
           9.2.1 IPTV Search Problems 321  
        9.3 Recommender System Architecture 322  
           9.3.1 Data Collection 323  
           9.3.2 Batch and Real-Time Stages 325  
        9.4 Recommender Algorithms 327  
           9.4.1 Overview of Recommender Algorithms 327  
           9.4.2 LSA Content-Based Algorithm 330  
           9.4.3 Item-based Collaborative Algorithm 333  
           9.4.4 Dimensionality-Reduction-Based Collaborative Algorithm 335  
        9.5 Recommender Services 337  
        9.6 System Evaluation 338  
           9.6.1 Off-Line Analysis 340  
           9.6.2 On-line Analysis 344  
        9.7 Conclusions 348  
        References 348  
     Chapter 10How to Get the Recommender Out of the Lab? 351  
        10.1 Introduction 352  
        10.2 Designing Real-World Recommender Systems 352  
        10.3 Understanding the Recommender Environment 353  
           10.3.1 Application Model 353  
              10.3.1.1 Understanding the recommender role in the application 354  
              10.3.1.2 Understanding the influence of the application implementation 357  
           10.3.2 User Model 358  
              10.3.2.1 Understanding who the users are 359  
              10.3.2.2 Understanding users’ motivations, goals and expectations 360  
              10.3.2.3 Understanding users’ context 361  
           10.3.3 Data Model 362  
              10.3.3.1 Understanding the type of available data to describe items 363  
              10.3.3.2 Understanding the quality / quantity of metadata 364  
              10.3.3.3 Understanding the properties of the item set 366  
           10.3.4 A Method for Using Environment Models 367  
        10.4 Understanding the Recommender Validation Steps in anIterative Design Process 368  
           10.4.1 Validation of the Algorithms 368  
           10.4.2 Validation of the Recommendations 369  
              10.4.2.1 Card Sorting 369  
              10.4.2.2 Low fidelity prototyping 370  
              10.4.2.3 Subjective qualitative evaluation 371  
              10.4.2.4 Diary studies 372  
        10.5 Use Case: a Semantic News Recommendation System 373  
           10.5.1 Context: MESH Project 374  
           10.5.2 Environmental Models in MESH 375  
              10.5.2.1 Instantiation of the environmental models 375  
              10.5.2.2 Links between the different models and constraints on design 375  
           10.5.3 In Practice: Iterative Instantiations of Models 379  
        10.6 Conclusion 380  
        References 380  
     Chapter 11Matching Recommendation Technologies andDomains 384  
        11.1 Introduction 384  
        11.2 RelatedWork 385  
        11.3 Knowledge Sources 385  
           11.3.1 Recommendation types 387  
        11.4 Domain 389  
           11.4.1 Heterogeneity 389  
           11.4.2 Risk 390  
           11.4.3 Churn 390  
           11.4.4 Interaction Style 391  
           11.4.5 Preference stability 391  
           11.4.6 Scrutability 392  
        11.5 Knowledge Sources 392  
           11.5.1 Social Knowledge 392  
           11.5.2 Individual 393  
           11.5.3 Content 394  
              11.5.3.1 Domain Knowledge 394  
        11.6 Mapping Domains to Technologies 395  
           11.6.1 Algorithms 397  
           11.6.2 Sample Recommendation Domains 398  
        11.7 Conclusion 399  
        Acknowledgements 399  
        References 399  
     Chapter 12 Recommender Systems in Technology EnhancedLearning 404  
        12.1 Introduction 405  
        12.2 Background 406  
        12.3 RelatedWork 409  
        12.4 Survey of TEL Recommender Systems 416  
        12.5 Evaluation of TEL Recommenders 421  
        12.6 Conclusions and further work 425  
        Acknowledgements 426  
        References 426  
  Part IIIInteracting with Recommender Systems 433  
     Chapter 13On the Evolution of Critiquing Recommenders 434  
        13.1 Introduction 434  
        13.2 The Early Days: Critiquing Systems/Recognised Benefits 435  
        13.3 Representation & Retrieval Challenges for CritiquingSystems 437  
           13.3.1 Approaches to Critique Representation 437  
              13.3.1.1 Over-critiquing & protracted recommendation dialogues 437  
              13.3.1.2 Critique redundancy & hidden feature-dependency 439  
              13.3.1.3 Limited product-space vision 439  
              13.3.1.4 Weak relevance of presented feedback options 441  
              13.3.1.5 Limitations of domain & preference driven approaches 441  
              13.3.1.6 Restricted user control 442  
           13.3.2 Retrieval Challenges in Critique-Based Recommenders 445  
              13.3.2.1 Preference inconsistency and longevity 446  
              13.3.2.2 Diminishing choices & unreachability 447  
              13.3.2.3 Refining recommendation retrievals 450  
              13.3.2.4 Multi-user preference handing 451  
        13.4 Interfacing Considerations Across Critiquing Platforms 453  
           13.4.1 Scaling to Alternate Critiquing Platforms 453  
           13.4.2 Direct Manipulation Interfaces vs Restricted User Control 455  
           13.4.3 Supporting Explanation, Confidence & Trust 456  
           13.4.4 Visualisation, Adaptivity, and Partitioned Dynamicity 458  
           13.4.5 Respecting Multi-cultural Usability Differences 460  
        13.5 Evaluating Critiquing: Resources, Methodologies andCriteria 460  
           13.5.1 Resources & Methodologies 461  
           13.5.2 Evaluation Criteria 461  
        13.6 Conclusion / Open Challenges & Opportunities 463  
        References 464  
     Chapter 14 Creating More Credible and Persuasive Recommender Systems: The Influence of Source Characteristics on Recommender SystemEvaluations 469  
        14.1 Introduction 469  
        14.2 Recommender Systems as Social Actors 470  
        14.3 Source Credibility 471  
           14.3.1 Trustworthiness 472  
           14.3.2 Expertise 472  
           14.3.3 Influences on Source Credibility 472  
        14.4 Source Characteristics Studied in Human-HumanInteractions 473  
           14.4.1 Similarity 473  
              14.4.1.1 Expertise Judgments 473  
              14.4.1.2 Trustworthiness Judgments 473  
           14.4.2 Likeability 474  
           14.4.3 Symbols of Authority 474  
           14.4.4 Styles of Speech 475  
           14.4.5 Physical Attractiveness 475  
           14.4.6 Humor 475  
        14.5 Source Characteristics in Human-Computer Interactions 476  
        14.6 Source Characteristics in Human-Recommender SystemInteractions 477  
           14.6.1 Recommender system type 477  
           14.6.2 Input characteristics 478  
           14.6.3 Process characteristics 479  
           14.6.4 Output characteristics 479  
           14.6.5 Characteristics of embodied agents 481  
        14.7 Discussion 482  
        14.8 Implications 482  
        14.9 Directions for future research 484  
        References 485  
     Chapter 15 Designing and Evaluating Explanations forRecommender Systems 492  
        15.1 Introduction 492  
        15.2 Guidelines 494  
        15.3 Explanations in Expert Systems 494  
        15.4 Defining Goals 495  
           15.4.1 Explain How the System Works: Transparency 496  
           15.4.2 Allow Users to Tell the System it is Wrong: Scrutability 498  
           15.4.3 Increase Users’ Confidence in the System: Trust 498  
           15.4.4 Convince Users to Try or Buy: Persuasiveness 500  
           15.4.5 Help Users Make Good Decisions: Effectiveness 501  
           15.4.6 Help Users Make Decisions Faster: Efficiency 503  
           15.4.7 Make the use of the system enjoyable: Satisfaction 504  
        15.5 Evaluating the Impact of Explanations on theRecommender System 505  
           15.5.1 Accuracy Metrics 506  
           15.5.2 Learning Rate 506  
           15.5.3 Coverage 507  
           15.5.4 Acceptance 507  
        15.6 Designing the Presentation and Interaction withRecommendations 508  
           15.6.1 Presenting Recommendations 508  
           15.6.2 Interacting with the Recommender System 509  
        15.7 Explanation Styles 510  
           15.7.1 Collaborative-Based Style Explanations 513  
           15.7.2 Content-Based Style Explanation 514  
           15.7.3 Case-Based Reasoning (CBR) Style Explanations 516  
           15.7.4 Knowledge and Utility-Based Style Explanations 517  
           15.7.5 Demographic Style Explanations 518  
        15.8 Summary and future directions 518  
        References 520  
     Chapter 16Usability Guidelines for Product Recommenders Based on Example Critiquing Research 524  
        16.1 Introduction 525  
        16.2 Preliminaries 526  
           16.2.1 Interaction Model 526  
           16.2.2 Utility-Based Recommenders 528  
           16.2.3 The Accuracy, Confidence, Effort Framework 530  
           16.2.4 Organization of this Chapter 531  
        16.3 RelatedWork 531  
           16.3.1 Types of Recommenders 531  
           16.3.2 Rating-based Systems 532  
           16.3.3 Case-based Systems 532  
           16.3.4 Utility-based Systems 532  
           16.3.5 Critiquing-based Systems 533  
           16.3.6 Other Design Guidelines 533  
        16.4 Initial Preference Elicitation 534  
        16.5 Stimulating Preference Expression with Examples 538  
           16.5.1 How Many Examples to Show 540  
           16.5.2 What Examples to Show 540  
        16.6 Preference Revision 543  
           16.6.1 Preference Conflicts and Partial Satisfaction 544  
           16.6.2 Tradeoff Assistance 545  
        16.7 Display Strategies 547  
           16.7.1 Recommending One Item at a Time 547  
           16.7.2 Recommending K best Items 548  
           16.7.3 Explanation Interfaces 549  
        16.8 A Model for Rationalizing the Guidelines 550  
        16.9 Conclusion 554  
        References 554  
     Chapter 17 Map Based Visualization of Product Catalogs 559  
        17.1 Introduction 559  
        17.2 Methods for Map Based Visualization 561  
           17.2.1 Self-Organizing Maps 562  
           17.2.2 Treemaps 563  
           17.2.3 Multidimensional Scaling 565  
           17.2.4 Nonlinear Principal Components Analysis 565  
        17.3 Product Catalog Maps 566  
           17.3.1 Multidimensional Scaling 567  
           17.3.2 Nonlinear Principal Components Analysis 570  
        17.4 Determining AttributeWeights using Clickstream Analysis 571  
           17.4.1 Poisson Regression Model 572  
           17.4.2 Handling Missing Values 572  
           17.4.3 Choosing Weights Using Poisson Regression 573  
           17.4.4 Stepwise Poisson Regression Model 574  
        17.5 Graphical Shopping Interface 574  
        17.6 E-Commerce Applications 575  
           17.6.1 MDS Based Product Catalog Map Using Attribute Weights 576  
           17.6.2 NL-PCA Based Product Catalog Map 580  
           17.6.3 Graphical Shopping Interface 582  
        17.7 Conclusions and Outlook 585  
        Acknowledgements 586  
        References 586  
  Part IVRecommender Systems and Communities 589  
     Chapter 18 Communities, Collaboration, and RecommenderSystems in PersonalizedWeb Search 590  
        18.1 Introduction 590  
        18.2 A Brief History ofWeb Search 592  
        18.3 The Future ofWeb Search 594  
           18.3.1 Personalized Web Search 595  
           18.3.2 Collaborative Information Retrieval 599  
           18.3.3 Towards Social Search 601  
        18.4 Case-Study 1 - Community-BasedWeb Search 602  
           18.4.1 Repetition and Regularity in Search Communities 603  
           18.4.2 The Collaborative Web Search System 604  
           18.4.3 Evaluation 607  
           18.4.4 Discussion 609  
        18.5 Case-Study 2 - Web Search. Shared. 609  
           18.5.1 The HeyStaks System 610  
           18.5.2 The HeyStaks Recomendation Engine 613  
           18.5.3 Evaluation 615  
           18.5.4 Discussion 618  
        18.6 Conclusions 618  
        Acknowledgements 619  
        References 620  
     Chapter 19Social Tagging Recommender Systems 626  
        19.1 Introduction 627  
        19.2 Social Tagging Recommenders Systems 628  
           19.2.1 Folksonomy 629  
           19.2.2 The Traditional Recommender Systems Paradigm 630  
           19.2.3 Multi-mode Recommendations 631  
        19.3 RealWorld Social Tagging Recommender Systems 632  
           19.3.1 What are the Challenges? 632  
           19.3.2 BibSonomy as Study Case 633  
              19.3.2.1 System Description 633  
              19.3.2.2 Recommendations in BibSonom 633  
              19.3.2.3 Technological and Infrastructure Requirements 634  
           19.3.3 Tag Acquisition 635  
        19.4 Recommendation Algorithms for Social Tagging Systems 637  
           19.4.1 Collaborative Filtering 637  
           19.4.2 Recommendation based on Ranking 641  
              19.4.2.1 Ranking based on Tensor Factorization 641  
              19.4.2.2 FolkRank 643  
           19.4.3 Content-Based Social Tagging RS 645  
              19.4.3.1 Text-Based 645  
              19.4.3.2 Image-Based 646  
              19.4.3.3 Audio-Based 647  
           19.4.4 Evaluation Protocols and Metrics 648  
        19.5 Comparison of Algorithms 650  
        19.6 Conclusions and Research Directions 651  
        References 653  
     Chapter 20Trust and Recommendations 656  
        20.1 Introduction 656  
        20.2 Computational Trust 658  
           20.2.1 Trust Representation 659  
           20.2.2 Trust Computation 661  
              20.2.2.1 Propagation 661  
              20.2.2.2 Aggregation 665  
        20.3 Trust-Enhanced Recommender Systems 666  
        20.3.1 Motivation 667  
        20.3.2 State of the Art 669  
           20.3.2.1 Mining a Trust Network 670  
           20.3.2.2 Automatic Trust Generation 673  
        20.3.3 Empirical Comparison 675  
           20.3.3.1 Data Sets 675  
           20.3.3.2 Coverage 677  
           20.3.3.3 Accuracy 679  
           20.3.3.4 Conclusion 680  
        20.4 Recent Developments and Open Challenges 681  
        20.5 Conclusions 683  
        References 683  
     Chapter 21Group Recommender Systems:Combining Individual Models 687  
        21.1 Introduction 687  
        21.2 Usage Scenarios and Classification of GroupRecommenders 689  
           21.2.1 Interactive Television 689  
           21.2.2 Ambient Intelligence 689  
           21.2.3 Scenarios Underlying Related Work 690  
           21.2.4 A Classification of Group Recommenders 691  
        21.3 Aggregation Strategies 692  
           21.3.1 Overview of Aggregation Strategies 692  
           21.3.2 Aggregation Strategies Used in Related Work 693  
           21.3.3 Which Strategy Performs Best 695  
        21.4 Impact of Sequence Order 696  
        21.5 Modelling Affective State 698  
           21.5.1 Modelling an Individual’s Satisfaction on its Own 699  
           21.5.2 Effects of the Group on an Individual’s Satisfaction 700  
        21.6 Using Affective State inside Aggregation Strategies 701  
        21.7 Applying Group Recommendation to Individual Users 703  
           21.7.1 Multiple Criteria 703  
           21.7.2 Cold-Start Problem 705  
           21.7.3 Virtual Group Members 707  
        21.8 Conclusions and Challenges 707  
           21.8.1 Main Issues Raised 707  
           21.8.2 Caveat: Group Modelling 708  
           21.8.3 Challenges 708  
        Acknowledgments 711  
        References 711  
  Part VAdvanced Algorithms 713  
     Chapter 22 Aggregation of Preferences in RecommenderSystems 714  
        22.1 Introduction 714  
        22.2 Types of Aggregation in Recommender Systems 715  
           22.2.1 Aggregation of Preferences in CF 717  
           22.2.2 Aggregation of Features in CB and UB Recommendation 717  
           22.2.3 Profile Construction for CB, UB 718  
           22.2.4 Item and User Similarity and Neighborhood Formation 718  
           22.2.5 Connectives in Case-Based Reasoning for RS 720  
           22.2.6 Weighted Hybrid Systems 720  
        22.3 Review of Aggregation Functions 721  
           22.3.1 Definitions and Properties 721  
              22.3.1.1 Practical Considerations in RS 723  
           22.3.2 Aggregation Families 725  
              22.3.2.1 Quasi-Arithmetic Means 725  
              22.3.2.2 OWA Functions 726  
              22.3.2.3 Choquet and Sugeno integrals 727  
              22.3.2.4 T-Norms and T-Conorms 729  
              22.3.2.5 Nullnorms and Uninorms 730  
        22.4 Construction of Aggregation Functions 731  
           22.4.1 Data Collection and Preprocessing 731  
           22.4.2 Desired Properties, Semantics and Interpretation 733  
           22.4.3 Complexity and the Understanding of Function Behavior 734  
           22.4.4 Weight and Parameter Determination 735  
        22.5 Sophisticated Aggregation Procedures in RecommenderSystems: Tailoring for Specific Applications 735  
        22.6 Conclusions 740  
        22.7 Further Reading 741  
        Acknowledgements 741  
        References 742  
     Chapter 23Active Learning in Recommender Systems 744  
        23.1 Introduction 744  
           23.1.1 Objectives of Active Learning in Recommender Systems 746  
           23.1.2 An Illustrative Example 747  
           23.1.3 Types of Active Learning 748  
        23.2 Properties of Data Points 749  
           23.2.1 Other Considerations 750  
        23.3 Active Learning in Recommender Systems 751  
           23.3.1 Method Summary Matrix 751  
        23.4 Active Learning Formulation 751  
        23.5 Uncertainty-based Active Learning 755  
           23.5.1 Output Uncertainty 755  
              23.5.1.1 Active Learning Methods 756  
              23.5.1.2 Uncertainty Measurement 756  
           23.5.2 Decision Boundary Uncertainty 757  
           23.5.3 Model Uncertainty 758  
              23.5.3.1 Probabilistic Models 758  
        23.6 Error-based Active Learning 760  
           23.6.1 Instance-based Methods 761  
              23.6.1.1 Output Estimates Change (Y-Change) 761  
              23.6.1.2 Cross Validation-based 762  
           23.6.2 Model-based 763  
              23.6.2.1 Parameter Change-based 764  
              23.6.2.2 Variance-based 764  
              23.6.2.3 Image Restoration-based 765  
        23.7 Ensemble-based Active Learning 765  
           23.7.1 Models-based 765  
           23.7.2 Candidates-based 766  
        23.8 Conversation-based Active Learning 769  
           23.8.1 Case-based Critique 770  
           23.8.2 Diversity-based 770  
           23.8.3 Query Editing-based 771  
        23.9 Computational Considerations 771  
        23.10 Discussion 772  
        Acknowledgments 773  
        References 773  
     Chapter 24Multi-Criteria Recommender Systems 777  
        24.1 Introduction 777  
        24.2 Recommendation as a Multi-Criteria Decision MakingProblem 779  
           24.2.1 Object of Decision 780  
           24.2.2 Family of Criteria 781  
           24.2.3 Global Preference Model 782  
           24.2.4 Decision Support Process 783  
        24.3 MCDM Framework for Recommender Systems: LessonsLearned 784  
        24.4 Multi-Criteria Rating Recommendation 788  
           24.4.1 Traditional single-rating recommendation problem 789  
           24.4.2 Extending traditional recommender systems to includemulti-criteria ratings 790  
        24.5 Survey of Algorithms for Multi-Criteria RatingRecommenders 791  
           24.5.1 Engaging Multi-Criteria Ratings during Prediction 792  
              24.5.1.1 Heuristic approaches 792  
              24.5.1.2 Model-based approaches 795  
           24.5.2 Engaging Multi-Criteria Ratings during Recommendation 799  
              24.5.2.1 Related work: multi-criteria optimization 800  
              24.5.2.2 Designing a total order for item recommendations 800  
              24.5.2.3 Finding Pareto optimal item recommendations 801  
              24.5.2.4 Using multi-criteria ratings as recommendation filters 802  
        24.6 Discussion and FutureWork 803  
        24.7 Conclusions 805  
        References 806  
     Chapter 25 Robust Collaborative Recommendation 812  
        25.1 Introduction 812  
        25.2 Defining the Problem 814  
           25.2.1 An Example Attack 816  
        25.3 Characterising Attacks 817  
           25.3.1 Basic Attacks 817  
              25.3.1.1 Random Attack 817  
              25.3.1.2 Average Attack 817  
           25.3.2 Low-knowledge attacks 818  
              25.3.2.1 Bandwagon Attack 818  
              25.3.2.2 Segment Attack 819  
           25.3.3 Nuke Attack Models 819  
              25.3.3.1 Love/Hate Attack 819  
              25.3.3.2 Reverse Bandwagon Attack 819  
           25.3.4 Informed Attack Models 820  
              25.3.4.1 Popular Attack 820  
              25.3.4.2 Probe Attack Strategy 821  
        25.4 Measuring Robustness 821  
           25.4.1 Evaluation Metrics 822  
           25.4.2 Push Attacks 823  
           25.4.3 Nuke Attacks 825  
           25.4.4 Informed Attacks 826  
           25.4.5 Attack impact 827  
        25.5 Attack Detection 827  
           25.5.1 Evaluation Metrics 828  
              25.5.1.1 Impact on Recommender and Attack Performance 829  
           25.5.2 Single Profile Detection 829  
              25.5.2.1 Unsupervised Detection 830  
              25.5.2.2 Supervised Detection 830  
           25.5.3 Group Profile Detection 831  
              25.5.3.1 Neighbourhood Filtering 831  
              25.5.3.2 Detecting attacks using Profile Clustering 832  
           25.5.4 Detection findings 834  
        25.6 Robust Algorithms 835  
           25.6.1 Model-based Recomendation 835  
           25.6.2 Robust Matrix Factorisation (RMF) 836  
           25.6.3 Other Robust Recommendation Algorithms 837  
           25.6.4 The Influence Limiter and Trust-based Recommendation 838  
        25.7 Conclusion 839  
        Acknowledgements 840  
        References 840  
  Index 843  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz