Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Combinatorial Methods for Chemical and Biological Sensors
  Großes Bild
 
Combinatorial Methods for Chemical and Biological Sensors
von: Radislav A. Potyrailo, Vladimir M. Mirsky
Springer-Verlag, 2009
ISBN: 9780387737133
495 Seiten, Download: 9474 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Introduction to Combinatorial Methods for Chemical and Biological Sensors 21  
     Introduction 21  
     Challenges in Rational Design of Sensing Materials 22  
     General Principles of Combinatorial Materials Screening 23  
     Opportunities for Sensing Materials 26  
     Designs of Combinatorial Libraries of Sensing Materials 27  
     Diversity in Needs for Combinatorial Development of Sensing Materials 30  
  Main Concepts of Chemical and Biological Sensing 43  
     Introduction 43  
     Signal Transduction 48  
        Electrochemical Sensors 48  
        Mass Sensitive Sensors 53  
        Thermal Sensors 54  
        Optical Sensors 54  
     Mechanisms of Chemical Sensing 56  
     Recognition Methods in Biosensing 60  
        Enzymes 62  
        Cells, Tissues, and Microbes 63  
        Immuno-Systems 65  
        Receptors 66  
        Nucleic Acids: Genosensors 67  
     Biomimetic Sensors 69  
     Closing Remarks 70  
  Self-Assembled Monolayers with Molecular Gradients 80  
     Introduction 80  
     Self-Assembled Monolayers with Molecular Gradients 81  
        General Aspects of Gradually Modified Materials and Surfaces 82  
        Silane Monolayers on Glass or Silicon Substrates 83  
        Alkanethiol Monolayers on Gold Surfaces 87  
     Conclusion and Outlook 91  
  Combinatorial Libraries of Fluorescent Monolayers on Glass 97  
     Introduction 97  
     Fluorescent Monolayers on Glass 100  
        Synthesis of Combinatorial Libraries of Fluorescent Monolayers 102  
        Characterization of Fluorescent Monolayers on Glass 104  
        Chemical Sensing by Fluorescent Monolayers on Glass 107  
           Cation and Anion Sensing in Organic Solvents 108  
           Cation and Anion Sensing in Water 111  
     Combinatorial Monolayer Array Fabrication 114  
        Combinatorial Monolayer Array in a Microtiter Plate Format for Metal Ion Sensing 115  
        Combinatorial Monolayer Array in a Microfluidic Chip 119  
     Combinatorial Fabrication of Luminescent and Metal Ion Patterns on Glass 121  
        Fabrication of Metal Ion Patterns on Glass by Microcontact Printing 123  
        Fabrication of Metal Ion Patterns on Glass by Dip Pen Nanolithography 125  
     Conclusions and Outlook 126  
  High-Throughput Screening of Vapor Selectivity of Multisize CdSe Nanocrystal/Polymer Composite Films 132  
     Introduction 132  
     Materials Characterization 134  
     Spectral Properties of Photoactivated Sensing Films 135  
     Sensing Response Patterns 138  
     Multivariate Spectral Analysis 140  
     Response Stability 143  
     Conclusions 145  
  Computational Design of Molecularly Imprinted Polymers 149  
     Introduction 149  
     Computational Methods for Rational Design of MIPs 153  
        Rational Approaches that Involve Molecular Mechanics 153  
           Modeling of the Template Molecule 154  
           Construction of the Monomer Database 154  
           Screening of the Virtual Library 155  
           Computation of Monomer Template Ratio 157  
        Examples of Using MM Methods in MIP Design 157  
        Rational Approaches that Involve Molecular Dynamics (MD) 162  
        Examples of Using MD Methods in MIP Design 163  
        Rational Approaches that Involve Quantum Mechanics 168  
        Examples of Using QM Methods in MIP Design 168  
        Rational Approaches Involving Chemometrics and Neural Network Methods 172  
        Examples of Using Chemometrics Methods in MIP Design 172  
     Conclusion 174  
     4 Acronyms and Further Descriptions 174  
  Experimental Combinatorial Methods in Molecular Imprinting 187  
     Introduction 187  
     Parameters Influencing the Performance of MIPs 190  
        Choice of Template 190  
        Choice of Functional Monomers 191  
        Choice of Cross-Linking Monomer and Solvent 192  
        Choice of Temperature and Initiator 193  
     MiniMIPs and How to Evaluate Them 194  
        Measuring the Imprinting Effect 194  
        Measuring Binding 196  
        Response Factors in the Assessment of miniMIPs under Equilibrium Conditions 197  
     Techniques for Generating miniMIP Libraries 197  
     Screening of Functional Monomers for Small Target Molecules 198  
        Triazines 199  
        Nifedipine 200  
        Estradiol 202  
     Optimization of Prepolymerization Composition 204  
        Watercompatible MIP for Bupivacaine 205  
        Watercompatible MIP for Sildenafil 207  
     Exploring MIP Cross-Reactivity 208  
     Conclusions 209  
  Combinatorially Developed Peptide Receptors for Biosensors 214  
     Peptides as Materials for Molecular Recognition 214  
     Porphyrin Binding Peptide 215  
        Screening of Porphyrin-Binding Peptide 216  
        Apparatus to Detect Nondescript Target Bound by Peptide 216  
        SPR Sensor 217  
        QCM Sensor 218  
        AFM Sensor with Combinatorial Peptide 219  
     Herbicide-Binding Peptide 220  
        Screening Strategy to Obtain an Herbicide Binder 222  
        Sequences and Characteristics of Herbicide-Binding Peptides 222  
        Sensor Using Herbicide-Binding Peptides 223  
     Dioxin-Binding Peptide 225  
        Screening Strategy to Obtain a Dioxin Binder 225  
        Sequences and Characteristics of Dioxin-Binding Peptides 227  
        Second Screening to Improve the Sensing Capability of the Peptides 229  
        Detecting Dioxin in Practical Environmental Soil Samples 230  
     Importance of Full Library Screening 231  
  Combinatorial Libraries of Arrayable Single-Chain Antibodies 235  
     Introduction 235  
     Design of the Human Combinatorial “Ronit 1” Library 237  
     Construction of the Library 240  
     Quality Control of the Library After Construction 242  
     Isolation of Specific Binders from the Library: “Standard” Bio-Panning 244  
     Isolation of Specific Binders from the Library: Cellulose Filter Colony Lift Screen 245  
     Applications of Library-Derived scFvs 250  
     Applications of Library-Derived scFvs in a Cellulose-Based Spotted Microarray 253  
     Conclusion 254  
  A Modular Strategy for Development of RNA-Based Fluorescent Sensors 261  
     Introduction 261  
     Modular Strategy for Tailoring Fluorescent Biosensors from RNP 264  
        Conversion of an ATP-Binding RNP Receptor to a Fluorescent ATP Sensor 264  
        Construction of Fluorescent RNP Libraries and Screening of Fluorescent RNP Sensors 265  
        Screening of ATP Sensors Responding Within Desired Concentration Range 268  
        Sensing Multiple Ligands at Different Wavelengths 270  
        Selective Fluorescence Responses of the ATP and GTP Sensors 271  
     Fluorescent RNP Sensors for Biologically Important Targets 274  
        Phosphotyrosine 274  
        Biogenic Amines 275  
     Conclusions 277  
  Impedometric Screening of Gas-Sensitive Inorganic Materials 283  
     Introduction 283  
     High Throughput Setup 285  
        Multielectrode Array 285  
        High Throughput Impedance Spectroscopy Setup 287  
        Flexible Data Handling 289  
     Experimental Section 290  
        Sample Preparation 290  
        Thick Film Preparation 291  
        Impedance Screening 293  
        Data Fitting and Evaluation 293  
        Gas Sensing Properties 296  
     Conclusion 300  
  Design of Selective Gas Sensors Using Combinatorial Solution Deposition of Oxide Semiconductor Films 304  
     Introduction 304  
     Combinatorial Approaches in Oxide Semiconductor Gas Sensors 305  
     Design of Selective Gas Sensing Materialsby Combinatorial Solution Deposition 308  
        Formation of Oxide Sols 308  
        Combinatorial Solution Deposition of Gas Sensing Films 309  
        Phase and Microstructure 310  
        Gas Sensing Characteristics 311  
        Discussion 314  
     Combinatorial Solution Deposition: Materials and Processing Issue and Future Outlook 315  
     Conclusions 317  
  Combinatorial Development of Chemosensitive Conductive Polymers 323  
     Functions of Conductive Polymers in Chemo and Biosensors 323  
     Synthesis of Conductive Polymers 324  
        Chemical Synthesis and Electropolymerization 324  
        Variable Parameters of Conductive Polymers 325  
     Combinatorial Synthesis of Conductive Polymers 326  
     Multiparameter Characterization of Chemosensitive Properties of Conductive Polymers 332  
     Outlook 335  
  Robotic Systems for Combinatorial Electrochemistry 339  
     Motivation for the Electrochemical Robotic System 339  
        Conception and Evaluation of the Electrochemical Robotic System 349  
     Applications of the Electrochemical Robotic System 355  
        Electrochemical Characterization of Compound Libraries 355  
        Electrochemical Synthesis 358  
        Development and Evaluation of Chemical Sensors and Biosensors 364  
        Voltammetric Metal Ion Determination 367  
        SECM Applications of the Electrochemical Robotic System 368  
     Critical Evaluation of the Concept of an Electrochemical Robotic System and Conclusions 371  
  Combinatorial Chemistry for Optical Sensing Applications 380  
     Introduction 380  
     Combinatorial Libraries 381  
     Solid Supports 382  
     Library Sensing Efficiency 382  
     Fluorescent Sensor Libraries 383  
        Libraries for Sensing Small Molecules 384  
        Libraries for Metal Ion Sensing 386  
     Libraries of Molecularly Imprinted Materials 389  
     Libraries of Materials for Optical Sensing of Solvent Vapors and Oxygen 393  
     Conclusions 395  
  High Throughput Production and Screening Strategies for Creating Advanced Biomaterials and Chemical Sensors 399  
     Introduction 399  
     Biodegradable Polymers 400  
     Sol–Gel-Derived Materials 403  
     High Throughput Production and Screening as a Pathway to Create Advanced Biomaterials and Chemical Sensing Platforms 406  
     Selected Results 413  
     Conclusions 419  
  Diversity-Oriented Fluorescence Library Approach for Novel Sensor Development 424  
     Fluorescence Sensor 424  
        Target-Oriented Approach 425  
        Diversity-Oriented Fluorescence Library Approach 427  
     Coumarin Dye Library and Applications 430  
     Dapoxyl Dye Library and Human Serum Protein Sensor 431  
     Styryl Dye Library and Applications 434  
     Benzimidazolium Dye Library and GTP Sensor 437  
     Rosamine Dye Library and Glutathione Sensor 441  
     Conclusion and Perspectives 443  
  Construction of a Coumarin Library for Development of Fluorescent Sensors 446  
     Method to Develop Novel Fluorescent Sensors 446  
     Construction of a Coumarin Library 449  
        Coumarin Library Constructed by Means of Palladium-Catalyzed Coupling Reactions 449  
        Coumarin Library Constructed by Click Chemistry 451  
     Development of a 6-Arylcoumarin Library of Candidate Fluorescent Sensors 452  
     Conclusions 455  
  Determination of Quantitative Structure–Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System 458  
     Introduction 458  
     Concept of Combinatorial Screening of Copolymer–Solvent Interactions 460  
     Sensor Array for High-Throughput Screening of Polymer–Solvent Interactions 461  
     Variability of System Performance 463  
     Wettability of Sensor Resonators 464  
     High-Throughput Screening of Copolymers 465  
     Property/Composition Mapping and Structure–Property Relationships 466  
     Applications of Polycarbonate Copolymers as Sensor Substrates 470  
     Conclusions 471  
  Computational Approaches to Design and Evaluation of Chemical Sensing Materials 474  
     Introduction 474  
     Application of Computational Techniques 475  
     Materials Modeling and Evaluation of Sensing Materials 476  
     Selection of a Sensor Set from Evaluated Materials: Modeling Sensor Response 478  
     Conclusions 480  
  Combinatorial Methods for Chemical and Biological Sensors: Outlook 484  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz