Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Trends in Computational Nanomechanics - Transcending Length and Time Scales
  Großes Bild
 
Trends in Computational Nanomechanics - Transcending Length and Time Scales
von: Trajan Dumitrica
Springer-Verlag, 2010
ISBN: 9781402097850
628 Seiten, Download: 17895 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 10  
  1 Hybrid Quantum/Classical Modeling of Material Systems: The ``Learn on the Fly'' Molecular Dynamics Scheme 20  
     1.1 Introduction 20  
     1.2 The LOTF Scheme 21  
        1.3.1 Reconciling the Boundary 21  
        1.3.2 Evaluation of the QM Forces 23  
        1.3.3 Force Matching 24  
           1.3.3.1 The Adjustable Potential 25  
        1.3.4 The LOTF Predictor-Corrector Scheme 26  
     1.3 Selection of the QM Region: An Hysteretic Algorithm 29  
        1.4.1 A Screw Dislocation Study 30  
        1.4.2 Brittle Fracture 31  
     1.4 Towards Chemical Complexity: Hydrogen-Induced Platelets in Silicon 34  
        1.5.1 The Atom-Resolved Stress Tensor 37  
     1.5 Acknowledgments 40  
     References 40  
  2 Multiscale Molecular Dynamics and the Reverse Mapping Problem 43  
     2.1 Introduction 43  
        2.2.1 Atomistic and Coarse-Grained Molecular Dynamics 46  
        2.2.2 Mapping Between Different Representations, or the Reverse Mapping Problem 47  
     2.2 Adaptive Multiscale Molecular Dynamics 48  
        2.3.1 Stage 1: Coupling Atomistic and Coarse-Grained Regions 49  
        2.3.2 Equations of Motion 55  
        2.3.3 Stage 2: Freezing the Intra-Bead Motions 56  
        2.3.4 Case Study 1: Liquid Methane 58  
        2.3.5 Other Adaptive Multiscale Implementations 60  
     2.3 Reverse Mapping Through Rigid Body Rotation 61  
        2.4.1 Rigid Body Rotational Optimization 62  
        2.4.2 Rigid Body Rotational Dynamics 65  
        2.4.3 Coupling Between the Rotational Dynamics and Coarse-Grained Molecular Dynamics 66  
        2.4.4 Case Study 2: Polyethylene Chain 68  
     2.4 Combining Rotational Reverse Mapping with Hybrid MD 71  
        2.5.1 Case Study 3: Hybrid Simulation of a Polyethylene Chain 72  
     2.5 Summary 75  
     2.6 Acknowledgments 75  
     References 76  
  3 Transition Path Sampling Studies of Solid-Solid Transformations in Nanocrystals under Pressure 78  
     3.1 Rare Events in Computer Simulations 78  
     3.2 Transition Path Sampling 81  
        3.3.1 The Transition Path Ensemble 81  
        3.3.2 Monte Carlo in Trajectory Space 83  
        3.3.3 Analyzing Trajectories 86  
        3.3.4 Calculating Rate Constants 88  
     3.3 A TPS Algorithm for Nanocrystals in a Pressure Bath 91  
        3.4.1 Ideal Gas Pressure Bath 91  
           3.4.1.1 Algorithm 92  
        3.4.2 Simple Shooting Moves 94  
     3.4 The Wurtzite to Rocksalt Transformation in CdSe Nanocrystals 95  
        3.5.1 Straightforward MD Simulations 96  
        3.5.2 TPS Reveals the Main Mechanism 98  
     3.5 Concluding Remarks 98  
     3.6 Acknowledgments 99  
     References 99  
  4 Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids 102  
     4.1 Introduction 102  
     4.2 Molecular Dynamics and its Applicability to the Simulation of Heat Transport 104  
        4.3.1 Introduction to Equilibrium MD 104  
        4.3.2 Temperature Control 106  
        4.3.3 Lattice Vibrations 107  
        4.3.4 The Quantum Model of Phonon Heat Transport 108  
        4.3.5 The Classical Limit 112  
        4.3.6 Heat Transport in Metals 115  
     4.3 Nonequilibrium Molecular Dynamics 116  
        4.4.1 The Green-Kubo Method 117  
        4.4.2 The Direct Method 117  
        4.4.3 Size Effects 123  
     4.4 Isothermal Concurrent Multiscale Methods 126  
        4.5.1 Coarse-Grained Dynamics 128  
        4.5.2 Coarse-Grained Thermal Properties 132  
        4.5.3 Boundary Conditions for the Atomistic/Continuum Interface 134  
        4.5.4 Isothermal Dynamic Multiscale Models 138  
     4.5 Non-Isothermal Concurrent Multiscale Methods 139  
        4.6.1 Quasi-Static Phonon Models for Insulators 140  
        4.6.2 Dynamic Phonon Models for Insulators 143  
        4.6.3 Quasi-Static Models for Metals 144  
        4.6.4 Dynamic Coarse-Grained Models for Metals 145  
        4.6.5 Conclusions 146  
     4.6 ACKNOWLEDGEMENT 147  
     REFERENCES 147  
  5 A Multiscale Methodology to Approach Nanoscale Thermal Transport 152  
     5.1 Introduction 152  
        5.2.1 Interfacial Resistance 153  
        5.2.2 Phonon Behavior Through Acoustic Waves 153  
        5.2.3 Strategies to Modulate the Interfacial Resistance 154  
        5.2.4 Role of Surface Modifications 154  
     5.2 Continuum Limits 155  
     5.3 Multiscale Investigations 156  
        5.4.1 Atomistic and Multiscale Simulations 156  
        5.4.2 Molecular Dynamics (MD) Simulations 158  
        5.4.3 Thermal Lattice Boltzmann Method (LBM) 159  
        5.4.4 Hybrid Multiscale Methodology 160  
        5.4.5 Coupling MD and LBM 161  
     5.4 Example Problems 163  
     5.5 Acknowledgments 163  
     REFERENCES 163  
  6 Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals 168  
     6.1 Introduction 168  
     6.2 Atomistic Modeling of Nanoscale Contact in Nanocrystalline Films 171  
        6.3.1 Simulation Methods 172  
           6.3.1.1 Molecular Dynamics 172  
           6.3.1.2 Quasicontinuum (QC) Method 172  
        6.3.2 Modeling of Spherical/Cylindrical Contact in Nanocrystalline Metals 173  
        6.3.3 Calculations of Local Stresses and Mean Contact Pressures 175  
        6.3.4 Tools for the Visualization of Defects and Grain Boundaries 177  
           6.3.4.1 Centro-Symmetry Parameter 177  
           6.3.4.2 Local Crystal Structure by Ackland and Jones 178  
     6.3 Effects of Interatomic Potentials on Equilibrium Microstructures 178  
     6.4 Effects of a Grain Boundary Network on Incipient Plasticity During Nanoscale Contact 180  
     6.5 Mechanisms of Grain Boundary Motion During Contact Plasticity 183  
     6.6 Concluding Remarks 187  
     6.7 Acknowledgment 187  
     References 188  
  7 Silicon Nanowires: From Empirical to First Principles Modeling 190  
     7.1 Introduction 190  
     7.2 Methodological Considerations 193  
        7.3.1 Empirical Models 194  
        7.3.2 Semi-Empirical Models 195  
     7.3 Structural Properties: Application of Empirical Methods 197  
     7.4 Morphology of Thin Silicon Nanowires: Application of Tight Binding and First Principles Methods 200  
     7.5 Conclusions 205  
     References 206  
  8 Multiscale Modeling of Surface Effects on the Mechanical Behavior and Properties of Nanowires 209  
     8.1 Introduction 209  
     8.2 Methodology 212  
        8.3.1 Continuum Mechanics Preliminaries 212  
        8.3.2 Surface and Bulk Energy Densities 213  
        8.3.3 Formulation for Embedded Atom Method/FCC Metals 215  
        8.3.4 Formulation for Diamond Cubic Lattices 219  
           8.3.4.1 Bulk Cauchy-Born Model for Silicon 219  
           8.3.4.2 Surface Cauchy-Born Model for Silicon 222  
     8.3 Finite Element Formulation and Implementation 224  
        8.4.1 Variational Formulation 224  
        8.4.2 Finite Element Eigenvalue Problem for Nanowire Resonant Frequencies 225  
     8.4 Applications of Surface Cauchy-Born Model 226  
     8.5 Direct Surface Cauchy-Born/Molecular Statics Comparison 226  
     8.6 Surface Stress Effects on the Resonant Properties of Silicon Nanowires 228  
        8.7.1 Constant Cross Sectional Area 231  
        8.7.2 Constant Length 233  
        8.7.3 Constant Surface Area to Volume Ratio 234  
     8.7 Discussion and Analysis 235  
        8.8.1 Comparison to Experiment 237  
     8.8 Conclusions and Perspectives 239  
     8.9 Acknowledgments 240  
     References 240  
  9 Predicting the Atomic Configuration of 1- and 2-Dimensional Nanostructures via Global Optimization Methods 246  
     9.1 Introduction 246  
     9.2 Reconstruction of Silicon Surfaces as a Problem of Global Optimization 249  
        9.3.1 The Parallel-Tempering Monte Carlo 250  
        9.3.2 Genetic Algorithm 254  
        9.3.3 Selected Results on Si(114) 256  
     9.3 The Structure of Freestanding Nanowires 258  
        9.4.1 A Genetic Algorithm for 1-D Nanowire Systems 258  
        9.4.2 Magic Structures of H-Passivated Si-[110] Nanowires 261  
        9.4.3 Growth of 1-D Nanostructures into Global Minima Under Radial Confinement 262  
     9.4 Future Directions 265  
     9.5 Acknowledgments 266  
     References 266  
  10 Atomic-Scale Simulations of the Mechanical Behavior of Carbon Nanotube Systems 269  
     10.1 Introduction 269  
     10.2 Computational Details 270  
        10.3.1 Interatomic Potentials 271  
        10.3.2 Important Approximations 274  
           10.3.2.1 Periodic Boundary Conditions 274  
           10.3.2.2 Temperature Control 275  
           10.3.2.3 Predictor-Corrector Algorithm 276  
           10.3.2.4 Simulation Methods for Mechanical Behavior 277  
     10.3 Mechanical Behavior of Nanotubes 278  
        10.4.1 Tensile Behavior 279  
           10.4.1.1 Young's Modulus 279  
           10.4.1.2 Fracture or Plastic Behavior 280  
           10.4.1.3 Effect of Filling, Functionalization, and Temperature 281  
           10.4.1.4 Effect of Combined Loads 282  
        10.4.2 Compressive Behavior 285  
           10.4.2.1 Buckling Instability 285  
           10.4.2.2 Effect of Filling, Functionalization, and Temperature 287  
           10.4.2.3 Nanotube Proximal Probe Tips 289  
           10.4.2.4 Crystalline Bundle 290  
        10.4.3 Bending Behavior 290  
           10.4.3.1 Bending Modulus 290  
           10.4.3.2 Buckling Instability 291  
           10.4.3.3 Effect of Filling, Functionalization, and Temperature 291  
           10.4.3.4 Effect of External Gases 292  
        10.4.4 Torsional Behavior 294  
           10.4.4.1 Shear Modulus and Stiffness 294  
           10.4.4.2 Buckling Instability 296  
           10.4.4.3 Effect of Filling, Functionalization, and Temperature 297  
           10.4.4.4 Effect of Combined Loads 300  
           10.4.4.5 Crystalline Bundle 305  
     10.4 Conclusions 305  
     10.5 Acknowledgments 306  
     REFERENCES 306  
  11 Stick-Spiral Model for Studying Mechanical Properties of Carbon Nanotubes 310  
     11.1 Introduction 310  
     11.2 Carbon Nanotubes and Their Mechanical Properties 311  
        11.3.1 Carbon Nanotubes (CNTs) 311  
        11.3.2 Mechanical Properties of CNTs 313  
        11.3.3 Theoretical Modeling on Geometry Dependent Mechanical Properties of CNTs 313  
     11.3 Stick-Spiral Model For Carbon Nanotubes 315  
        11.4.1 Model Description 315  
        11.4.2 Governing Equations of the Stick-Spiral Model 317  
        11.4.3 Linear Stick-Spiral Model and its Applications 319  
           11.4.3.1 Linear Stick-Spiral Model 319  
           11.4.3.2 Elastic Mechanical Properties of SWCNTs 319  
           11.4.3.3 Explicit Expressions for Vibrating Frequencies of Some Raman Modes 321  
        11.4.4 Nonlinear Stick-Spiral Model and its Applications 323  
           11.4.4.1 Nonlinear Stick-Spiral Model 323  
           11.4.4.2 Mechanical Behavior of SWCNTs Under Large Strains 324  
     11.4 Concluding Remarks 327  
     11.5 Acknowledgments 328  
     11.5 Appendix 328  
     References 330  
  12 Potentials for van der Waals Interaction in Nano-Scale Computation 336  
     12.1 Introduction 336  
     12.2 Potentials for van der Waals Interaction 337  
        12.3.1 The Lennard-Jones Potential 337  
        12.3.2 The Registry-Dependent Interlayer Potential 337  
     12.3 Computational Method 337  
     12.4 Comparison Between the Two Potentials 340  
        12.5.1 On the Lattice Registry Effect 340  
        12.5.2 On the Deformation of Carbon Nanotubes 342  
     12.5 Concluding Remarks 345  
     REFERENCES 345  
  13 Electrical Conduction in Carbon Nanotubes under Mechanical Deformations 347  
     13.1 Introduction 347  
     13.2 Modeling Procedures 351  
        13.3.1 The Carbon Nanotube Wall 352  
        13.3.2 Initial Internal Stress State 354  
        13.3.3 Construction of Special Interaction Elements 355  
        13.3.4 Model of the Inter-Layer Shear Resistance 356  
        13.3.5 Electrical Transport Model 356  
     13.3 Numerical Results 357  
        13.4.1 Bending of SWNTs 357  
        13.4.2 Tube-Tube-Substrate Interaction 358  
        13.4.3 Deformation of MWNTs Under Bending 359  
        13.4.4 Laterally-Squeezed (8, 8) SWNT 363  
        13.4.5 Bent (10, 0) SWNT 365  
        13.4.6 Simulation of Laboratory Experiments on a MWNT 366  
        13.4.7 Effect of the Outer Diameter on the Conductance of MWNTs Under Bending 368  
        13.4.8 Effect of the Outer Diameter on the Conductance of MWNTs Under Stretching 372  
        13.4.9 Effect of Current Saturation -- Non-Linear I-V Response 373  
     13.4 Conclusions 374  
     References 375  
  14 Multiscale Modeling of Carbon Nanotubes 378  
     14.1 Introduction 378  
     14.2 Multiscale Coupling Approaches 379  
        14.3.1 Quasi-Continuum Method 380  
        14.3.2 Bridging Domain Method 381  
        14.3.3 Bridging Scale Method 382  
     14.3 Brenner Potential 383  
     14.4 An Atomic Simulation Method 385  
     14.5 A Higher-Order Continuum Model 387  
        14.6.1 Higher-Order Gradient Continuum 388  
        14.6.2 Constitutive Relationship 390  
        14.6.3 Mesh-Free Numerical Simulation 391  
     14.6 Multiscale Coupling Scheme 392  
     14.7 Multiscale Computational Examples 393  
        14.8.1 Bending Test 394  
        14.8.2 Tensile Failure of SWCNTs with a Single-Atom Vacancy Defect 395  
     14.8 Summary 397  
     References 398  
  15 Quasicontinuum Simulations of Deformations of CarbonNanotubes 400  
     15.1 Introduction 400  
     15.2 Quasicontinuum Method for Carbon Nanotubes 402  
        15.3.1 Deformations of Single-Walled CNTs 403  
        15.3.2 Bravais Multilattice and Inner Displacement 405  
        15.3.3 Interpolation Function 407  
        15.3.4 Summation and Minimization of Energy 409  
        15.3.5 Adaptive Meshing Scheme 413  
        15.3.6 Deformation of Multiwalled Carbon Nanotubes (MWCNTs) 413  
        15.3.7 Numerical Examples 414  
           15.3.7.1 Bonding and Nonbonding Interaction for CNT 414  
           15.3.7.2 Bending Simulations for a SWCNT 415  
     15.3 QC Method for CNTS by Use of Variable-Node Elements 417  
        15.4.1 Variable Node Elements for QC 418  
        15.4.2 Numerical Examples 422  
     15.4 Conclusions 424  
     15.5 Acknowledgment 425  
     15.5 Appendix A. The Green Strain in Deformation of a CNT 425  
     15.5 Appendix B. The Functions and the Parameters in the Tersoff-Brenner Potential 426  
     15.5 Appendix C. The Shape Functions for a 24-noded Variable-Node Element 427  
     References 430  
  16 Electronic Properties and Reactivities of Perfect, Defected, and Doped Single-Walled Carbon Nanotubes 431  
     16.1 Scope 431  
     16.2 Introduction 431  
     16.3 Theoretical Methods 433  
        16.4.1 First-Principles Calculations 433  
        16.4.2 Semiempirical Quantum Mechanical Methods 434  
        16.4.3 Density-Functional Theory 436  
        16.4.4 ONIOM Model 436  
        16.4.5 Molecular Dynamical Simulations 437  
     16.4 Single-Walled Carbon Nanotubes 438  
        16.5.1 Perfect SWCNT Rods 438  
        16.5.2 Open-End SWCNT Segment 441  
     16.5 Vacancy-Defected Fullerenes and Swcnts 441  
        16.6.1 Vacancy-Defected Fullerenes 442  
        16.6.2 Vacancy-Defected SWCNTs 449  
           16.6.2.1 Vacancy-Defected (5,5) and (10,0) SWCNTs 449  
           16.6.2.2 Vacancy-Defected (5,5) SWCNT Clip 454  
     16.6 Doped SWCNTs 455  
        16.7.1 B- and N-Doped SWCNTs 455  
        16.7.2 Ni-, Pd-, and Sn-Doped SWCNTs 455  
        16.7.3 Chalcogen Se- and Te-Doped SWCNTs 458  
        16.7.4 Pt-Doped SWCNTs 458  
        16.7.5 Gas Adsorptions on Pt-Doped SWCNTs 461  
     16.7 Chemical Reactions of Vacancy-Defected SWCNT 463  
        16.8.1 Computational Details and Model Selection 463  
        16.8.2 Chemical Reaction of NO with Vacancy-Defected SWCNT 464  
        16.8.3 Chemical Reaction of O 3 with Vacancy-Defected SWCNT 467  
           16.8.3.1 Reaction of O 3 with the Active Carbon Atom 468  
           16.8.3.2 Reaction of O 3 with the C8-C9 Bond (Position 1) 468  
           16.8.3.3 Reaction of O 3 with the C6-C7 Bond (Position 2) 470  
           16.8.3.4 Reaction of O 3 with the C4-C5 Bond (Position 3) 471  
           16.8.3.5 Reaction of O 3 with the C2-C3 Bond (Position 4) 472  
           16.8.3.6 Ab initio Molecular Dynamics Studies 472  
     16.8 Conclusions and Outlooks 474  
     16.9 ACKNOWLEDGMENTS 475  
     References 475  
  17 Multiscale Modeling of Biological Protein Materials -- Deformation and Failure 482  
     17.1 Introduction 482  
        17.2.1 Nanomechanics of Protein Materials: Challenges and Opportunities 484  
        17.2.2 Strategy of Investigation 485  
        17.2.3 Impact of Materiomics 486  
        17.2.4 Transfer from Biological Protein Materials to Synthetic Materials 488  
     17.2 Atomistic Simulation Methods 488  
        17.3.1 Molecular Dynamics Formulation 488  
        17.3.2 CHARMM Force Field 491  
        17.3.3 ReaxFF Force Field 493  
        17.3.4 Coarse-Graining Approaches of Protein Structures 495  
           17.3.4.1 Single-Bead Models 496  
           17.3.4.2 Multi-Bead Models 498  
           17.3.4.3 Coarser Models 498  
           17.3.4.4 Implicit Solvent 498  
           17.3.4.5 Case Study: Coarse-Grained Model of Alpha-Helical Protein Domains 499  
           17.3.4.6 Case Study: Network Model of Alpha Helices 502  
     17.3 Theoretical Strength Models of Protein Constituents 505  
        17.4.1 Strength of a Single Bond 506  
           17.4.1.1 Bell's Model: A Force Dependent Dissociation Rate 506  
           17.4.1.2 Evans' Extension: A Loading Rate Dependence of Strength 507  
           17.4.1.3 Other Refinements of Bell's Model 509  
        17.4.2 Strength of Complex Molecular Bonds 509  
           17.4.2.1 Multiple Bonds in Parallel 510  
           17.4.2.2 Coupled Strength Models 511  
           17.4.2.3 Hierarchical Bell Model 512  
        17.4.3 Size Effects in H-Bond Clusters 514  
        17.4.4 Asymptotic Strength Model for Alpha Helix Protein Domains 515  
           17.4.4.1 Modeling and Results 517  
           17.4.4.2 Summary and Discussion 521  
     17.4 Complementary Experimental Methods 522  
        17.5.1 Structural Characterization 522  
        17.5.2 Manipulation and Mechanical Testing 522  
        17.5.3 Synthesis Methods for Hierarchical Materials 524  
     17.5 De Novo Design of Bioinspired and Biomimetic Nanomaterials 524  
        17.6.1 Development of Bioinspired Metallic Nanocomposites 527  
        17.6.2 Nanostructure Design Effects Under Tensile and Shock Loading 528  
        17.6.3 Outlook and Opportunities 530  
     17.6 Discussion and Conclusion 531  
     17.7 Acknowledgements 533  
     References 533  
  18 Computational Molecular Biomechanics: A Hierarchical Multiscale Framework with Applications to Gating of Mechanosensitive Channels of Large Conductance 543  
     18.1 Introduction 543  
     18.2 Brief Overview of Mechanosensitive (Ms) Channels 544  
        18.3.1 Structural Components of MS Channel of Large Conductance (MscL) 544  
        18.3.2 Previous Experimental and Theoretical Investigations 547  
        18.3.3 Previous Numerical Approaches 548  
     18.3 Continuum-Based Approach: Model and Methods for Studying Mscl 549  
     18.4 Gating Mechanisms of Mscl and Insights for Mechanotransduction 551  
        18.5.1 Effect of Different Loading Modes 551  
           18.5.1.1 Gating Behaviors Upon Equi-Biaxial Tension 551  
           18.5.1.2 Gating Behaviors Upon Bending 554  
           18.5.1.3 Insights of Loading Modes Vs. Mechanotransduction 555  
        18.5.2 Effects of Structural Motifs 556  
        18.5.3 Co-operativity of MS Channels 557  
        18.5.4 Large Scale Simulations of Lab Experiments 559  
     18.5 Future Look and Improvements of Continuum Framework 560  
     18.6 Conclusion 562  
     18.7 Acknowledgment 563  
     References 563  
  19 Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks 565  
     19.1 Introduction 565  
     19.2 Biopolymers of Interest 566  
        19.3.1 Intracellular Networks 567  
           19.3.1.1 Actin 567  
           19.3.1.2 Microtubules 568  
           19.3.1.3 Intermediate Filaments 569  
           19.3.1.4 Spectrin 569  
        19.3.2 Extracellular Networks 569  
           19.3.2.1 Collagen I 569  
           19.3.2.2 Collagen IV 570  
           19.3.2.3 Laminin 570  
           19.3.2.4 Fibronectin 570  
           19.3.2.5 Fibrin 571  
        19.3.3 The Mechanical Behavior of Biopolymers 571  
     19.3 Network Imaging, Extraction, and Generation 574  
        19.4.1 Imaging 575  
           19.4.1.1 Fiber-Level Imaging 575  
           19.4.1.2 Indirect (Population-Level) Imaging 576  
        19.4.2 Network Extraction 576  
        19.4.3 Model Network Generation 577  
        19.4.4 Network Generation via Energy Minimization 578  
     19.4 General Modeling Approaches for Biopolymer Networks 580  
        19.5.1 Definitions 580  
        19.5.2 Affine Theory 581  
        19.5.3 Nonaffine Models 582  
           19.5.3.1 Spring Model 582  
           19.5.3.2 Beam Models 584  
           19.5.3.3 Entropic Beam Model 585  
        19.5.4 Finite Strain 586  
           19.5.4.1 Strain Stiffening 586  
        19.5.5 Bridging Scales -- Multiscale Behavior of Networks 586  
           19.5.5.1 Representative Volume Element 586  
           19.5.5.2 Volume Averaging 587  
     19.5 Applications to Biopolymers 590  
        19.6.1 Actin 590  
        19.6.2 Microtubules, IFs, and the Cytoskeleton 591  
        19.6.3 Spectrin 592  
        19.6.4 Collagen I 593  
        19.6.5 Type IV Collagen 596  
        19.6.6 Fibronectin, Laminin, and the ECM 596  
     19.6 Summary 596  
     19.7 Nomenclature 597  
     REFERENCES 599  
  Index 611  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz