Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Introducing Molecular Electronics
  Großes Bild
 
Introducing Molecular Electronics
von: Gianaurelio Cuniberti, Giorgos Fagas, Klaus Richter
Springer-Verlag, 2006
ISBN: 9783540315148
537 Seiten, Download: 13078 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 6  
  Preface 8  
  Contents 10  
  List of Contributors 16  
  Introducing Molecular Electronics: A Brief Overview 21  
     1 A Passage Through Time: Past, Present and Future Challenges 21  
     2 What You Find in the Book – a Passage Through Its Contents 24  
     3 What is not Included in the Book – Literature Hints 26  
     Acknowledgements 28  
     References 28  
  Part I Theory 31  
     Foundations of Molecular Electronics – Charge Transport in Molecular Conduction Junctions 33  
        1 Prologue 33  
        2 Theoretical Approaches to Conductance 38  
        3 The Relationship Between Electron Transfer Rates and Molecular Conduction 41  
        4 Interaction with Nuclear Degrees of Freedom 42  
           4.1 Timescale Issues 43  
           4.2 Transition from Coherent to Incoherent Motion 44  
           4.3 Heating and Heat Conduction 47  
           4.4 Inelastic Electron Tunneling Spectroscopy (IETS) 51  
        5 Remarks and Generalities 53  
           5.1 Electron Transfer and Conductance: Common Issues 53  
           5.2 Junction Conductance 54  
        Acknowledgements 64  
        References 65  
     AC-Driven Transport Through Molecular Wires 75  
        1 Introduction 75  
        2 Basic Concepts 76  
           2.1 Model for Driven Molecular Wire Coupled to Leads 76  
           2.2 Current Through Static Molecular Wire 78  
        3 Floquet Approach to the Driven Transport Problem 79  
           3.1 Retarded Green Function 80  
           3.2 Current Through the Driven Molecular Wire 81  
        4 Weak-Coupling Approximations 85  
           4.1 Asymptotic Weak Coupling 85  
           4.2 Master-Equation Approach 86  
        5 Photon-Assisted Transport Across a Molecular Bridge 90  
        6 Conclusions 92  
        Acknowledgements 93  
        References 93  
     Electronic Structure Calculations for Nanomolecular Systems 97  
        1 Electronic Structure of Nanomolecular Systems 97  
        2 Selected Applications of Ground-State Electronic Structure Calculations by DFT 99  
           2.1 Carbon Nanotubes 100  
           2.2 Model and Realistic DNA-Base Stacks 103  
        3 Linear Response by TDDFT 108  
           3.1 Excitation Energies in TDDFT 109  
           3.2 Comments 112  
           3.3 Selected Applications of TDDFT 113  
        4 Wannier Functions for Electronic Structure Calculations 117  
           4.1 Selected Applications of Wannier Computationin Nanostructures 118  
        Acknowledgements 126  
        References 127  
     Ab-initio Non-Equilibrium Green’s Function Formalism for Calculating Electron Transport in Molecular Devices 137  
        1 Introduction 137  
        2 Mean Field Electronic Structure Theory 138  
        3 Application of DFT to Modeling Molecular Electronics Devices 140  
           3.1 The Screening Approximation 142  
           3.2 Calculating the Charge Density Using Green’s Functions 144  
           3.3 Taking into Account the Electrode Region Through a Self Energy 146  
           3.4 Calculation of the Electrode Green’s Function 147  
           3.5 Integrating the Spectral Density with a Complex Contour 148  
           3.6 Non-Equilibrium Green’s Functions for Finite Bias 148  
           3.7 Calculating the Effective Potential from the Electron Density 150  
           3.8 The Complete Self-Consistent Algorithm for the NEGF Calculation 151  
           3.9 Electron Transport Coe.cients and Currents Obtained from the Green’s Function 153  
        4 Implementation: McDCAL, TranSIESTA, and Atomistix Virtual NanoLab 154  
        5 Resistance of Molecular Wires 155  
        6 Non-Equilibrium Forces 161  
        7 Conclusion 167  
        References 167  
     Tight-Binding DFT for Molecular Electronics (gDFTB) 173  
        1 Introduction 173  
        2 The Self-Consistent Density-Functional Tight-Binding 175  
        3 Setup of the Transport Problem 177  
        4 The Green’s Function Technique 179  
        5 The Relationship with the Keldysh Green’s Functions 180  
        6 The Terminal Currents 183  
        7 The Poisson Equation 184  
        8 Atomic Forces 185  
        9 gDFTB Example Applications 187  
        10 Incoherent Electron-Phonon Scattering 189  
        11 Comments on DFT Applied to Transport 199  
        12 Conclusions 200  
        References 201  
     Current-Induced Effects in Nanoscale Conductors 205  
        1 Current Through a Nanoscale Junction 205  
        2 Current-Induced Forces 208  
        3 Shot Noise 210  
        4 Local Heating 214  
        5 Inelastic Conductance 220  
        6 Conclusions 222  
        Acknowledgements 222  
        References 222  
     Single Electron Tunneling in Small Molecules 227  
        1 Introduction 227  
        2 Tunneling Transport 228  
           2.1 Current and Shot-Noise Spectroscopy 228  
           2.2 Master Equations Current and Shot-Noise 230  
        3 Electronic Excitations of a Benzene Ring 233  
        4 Spin Excitations of a [2 × 2] Grid Molecule 235  
        5 Vibrational Excitations and Multiple Orbitals 239  
        6 Current Noise (Shot Noise) 242  
        7 Conclusions 245  
        Acknowledgments 246  
        References 246  
     Transport through Intrinsic Quantum Dots in Interacting Carbon Nanotubes 249  
        1 Introduction 249  
        2 Electrical Transport in Individual SWNTs 250  
           2.1 Field Theory of a Clean SWNT 250  
           2.2 Double Barrier Problem in a TLL 253  
        3 Markovian Master Equation Approach 256  
           3.1 Rate Equations 256  
           3.2 Conductance Peak Height 258  
        4 Quantum Monte Carlo Simulations 262  
           4.1 Dynamical Simulations 262  
           4.2 Strong Barrier Transmission 262  
           4.3 Weak Barrier Transmission 264  
        5 Conclusions 266  
        Acknowledgments 267  
        References 267  
  Part II Experiment 271  
     Contacting Individual Molecules Using Mechanically Controllable Break Junctions 273  
        1 Introduction 273  
        2 Experimental Techniques 275  
           2.1 Fabrication of the Electrodes 275  
           2.2 Deposition of Molecules 277  
           2.3 Measurement Techniques 279  
        3 Simple Molecules 279  
        4 Molecules Bonded by Thiol Groups to Gold 286  
           4.1 Low Temperatures 290  
        5 Conclusions and Prospects 291  
        Acknowledgements 291  
        References 291  
     Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers 295  
        1 Introduction 295  
        2 Experiment 297  
        3 Theoretical Basis 299  
           3.1 Possible Conduction Mechanisms 299  
           3.2 Tunneling Models 300  
        4 Results 302  
           4.1 Current-Voltage Characteristics 302  
           4.2 Inelastic Tunneling 308  
        5 Conclusions 315  
        Acknowledgements 316  
        References 316  
     Making Contacts to Single Molecules: Are We There Yet? 321  
        1 Introduction 321  
        2 Contact Resistance in NP Contact Experiments 323  
        3 Changing the NP Size 327  
        Acknowledgements 330  
        References 330  
     Six Unimolecular Recti.ers and What Lies Ahead 333  
        1 Introduction 333  
        2 Metal Contacts 338  
        3 The Aviram-Ratner Ansatz 338  
        4 Three Processes for Recti.cation by Organic Monolayers 340  
        5 Current and Resistance Across a Metal-Molecule-Metal System 341  
        6 Assembly Techniques: Physisorption Versus Chemisorption 342  
        7 The “Organic Recti.er Project” 343  
        8 Electrical Properties of Monolayers and Multilayers 345  
        9 Rectification of C16H33Q-3CNQ 345  
        10 Molecular Properties of C16H33Q-3CNQ 346  
        11 Film Properties of C16H33Q-3CNQ 347  
        12 Metal – LB Film – Metal Sandwiches of C16H33Q-3CNQ 348  
        13 Unimolecular Recti.cation by C16H33Q-3CNQ 349  
        14 Chemisorbed Monolayer Recti.ers 352  
        15 Three More Recti.ers 355  
        16 Direction of “Forward Current” in Recti.ers 358  
        17 Challenges for the Near Future 359  
        18 Conclusion 363  
        19 End-Notes 363  
        Acknowledgments 364  
        References 364  
     Quantum Transport in Carbon Nanotubes 371  
        1 Introduction 371  
        2 Synthesis 372  
        3 The Structure of Carbon Nanotubes 374  
           3.1 Lattice Structure 374  
           3.2 Structural Investigations of Carbon Nanotubes 374  
        4 Electronic Structure of Nanotubes 378  
           4.1 Energy Dispersion and Density of States of Graphene 378  
           4.2 Band Structure and Density of States of Carbon Nanotubes 379  
        5 Electron Transport Experiments 381  
           5.1 Electric Contacts 381  
           5.2 Ballistic Transport 383  
           5.3 Diffusive Transport 384  
           5.4 Effects of the Electron-Electron Interaction 388  
        6 Conclusions 395  
        Acknowledgements 395  
        References 395  
     Carbon Nanotube Electronics and Optoelectronics 401  
        1 Introduction 401  
        2 Schottky Barrier Carbon Nanotube Transistors 402  
           2.1 Needle-Like Contact Model 404  
           2.2 In.uence of the Contact Geometry 408  
           2.3 Effect of Gas Adsorption 410  
           2.4 Scaling of the SB-CNFET Performance 413  
           2.5 Scaling of the Drain Voltage 418  
           2.6 Light-Emission from a SB-CNFET 423  
        3 Conclusions and Outlook 426  
        Acknowledgements 427  
        References 427  
     Charge Transport in DNA-based Devices 431  
        1 Introduction 431  
        2 Direct Electrical Transport Measurements in DNA 435  
           2.1 Single Molecules 437  
           2.2 Bundles and Networks 451  
           2.3 Conclusions from the Experiments about DNA Conductivity 455  
        3 Conclusions and Perspectives 456  
        Acknowledgements 458  
        References 458  
  Part III Outlook 465  
     CMOL: Devices, Circuits, and Architectures 467  
        1 Introduction 467  
        2 Devices 469  
        3 Circuits 472  
        4 CMOL Memories 475  
        5 CMOL FPGA: Boolean Logic Circuits 480  
        6 CMOL CrossNets: Neuromorphic Networks 487  
        7 Conclusions 494  
        Acknowledgements 494  
        References 494  
     Architectures and Simulations for Nanoprocessor Systems Integrated on the Molecular Scale 499  
        1 Introduction 499  
        2 Starting at the Bottom: Molecular Scale Devices in Device-Driven Architectures for Nanoprocessors 502  
        3 Challenges for Nanoelectronics in Developing Nanoprocessors 505  
           3.1 Overview 505  
           3.2 Challenges Posed by the Use of Conventional Microprocessor Architectures 506  
           3.3 Challenges in the Development of Novel Nanoprocessing Architectures 506  
        4 A Brief Survey of Nanoprocessor System Architectures 510  
           4.1 Overview 510  
           4.2 Migration of Conventional Processor Architectures to the Molecular Scale 510  
           4.3 Overview of Novel Architectures for Nanoelectronics 513  
        5 Principles of Nanoprocessor Architectures Based on FPGAs and PLAs 516  
           5.1 Overview 516  
           5.2 Description of Regular Arrays, FPGAs, and PLAs: Advantages and Challenges 516  
           5.3 The DeHon-Wilson PLA Architecture 517  
        6 Sample Simulation of a Circuit Architecture for a Nanowire-Based Programmable Logic Array 519  
           6.1 Methodology for the Simulation and Analysis of Nanoprocessors 519  
           6.2 Device Models for System Simulation of the DeHon-Wilson NanoPLA 520  
           6.3 Simulations and Analyses of the NanoPLA 521  
           6.4 Further Implications and Issues for System Simulations 524  
        7 Conclusion 525  
        References 526  
  Index 533  
  More eBooks at www.ciando.com 0  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz