Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Principles of Adaptive Filters and Self-learning Systems
  Großes Bild
 
Principles of Adaptive Filters and Self-learning Systems
von: Anthony Zaknich
Springer-Verlag, 2005
ISBN: 9781846281211
408 Seiten, Download: 2846 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 9  
  Acknowledgements 13  
  Contents 15  
  PART I. INTRODUCTION 23  
     1. Adaptive Filtering 25  
        1.1 Linear Adaptive Filters 27  
           1.1.1 Linear Adaptive Filter Algorithms 29  
        1.2 Nonlinear Adaptive Filters 31  
           1.2.1 Adaptive Volterra Filters 31  
        1.3 Nonclassical Adaptive Systems 32  
           1.3.1 Artificial Neural Networks 32  
           1.3.2 Fuzzy Logic 33  
           1.3.3 Genetic Algorithms 33  
        1.4 A Brief History and Overview of Classical Theories 34  
           1.4.1 Linear Estimation Theory 34  
           1.4.2 Linear Adaptive Filters 35  
           1.4.3 Adaptive Signal Processing Applications 36  
           1.4.4 Adaptive Control 38  
        1.5 A Brief History and Overview of Nonclassical Theories 39  
           1.5.1 Artificial Neural Networks 39  
           1.5.2 Fuzzy Logic 40  
           1.5.3 Genetic Algorithms 40  
        1.6 Fundamentals of Adaptive Networks 41  
        1.7 Choice of Adaptive Filter Algorithm 45  
     2. Linear Systems and Stochastic Processes 47  
        2.1 Basic Concepts of Linear Systems 49  
        2.2 Discrete-time Signals and Systems 51  
        2.3 The Discrete Fourier Transform (DFT) 53  
           2.3.1 Discrete Linear Convolution Using the DFT 54  
           2.3.2 Digital Sampling Theory 55  
        2.4 The Fast Fourier Transform (FFT) 59  
        2.5 The z-Transform 62  
           2.5.1 Relationship between Laplace Transform and z-Transform 62  
           2.5.2 General Properties of the DFT and z-Transform 66  
        2.6 Summary of Discrete-time LSI Systems 68  
           2.7.1 Phase Response from Frequency Magnitude Response 72  
        2.8 Linear Algebra Summary 73  
           2.8.1 Vectors 73  
           2.8.2 Linear Independence, Vector spaces, and Basis Vectors 74  
           2.8.3 Matrices 75  
           2.8.4 Linear Equations 77  
           2.8.5 Special Matrices 78  
           2.8.6 Quadratic and Hermitian Forms 81  
           2.8.7 Eigenvalues and Eigenvectors 81  
        2.9 Introduction to Stochastic Processes 83  
        2.10 Random Signals 85  
        2.11 Basic Descriptive Properties of Random Signals 86  
           2.11.1 The Mean Square Value and Variance 86  
           2.11.2 The Probability Density Function 87  
           2.11.3 Jointly Distributed Random Variables 90  
           2.11.4 The Expectation Operator 90  
           2.11.5 The Autocorrelation and Related Functions 91  
           2.11.6 Power Spectral Density Functions 94  
           2.11.7 Coherence Function 95  
           2.11.8 Discrete Ergodic Random Signal Statistics 96  
           2.11.9 Autocovariance and Autocorrelation Matrices 97  
           2.11.10 Spectrum of a Random Process 98  
           2.11.11 Filtering of Random Processes 100  
           2.11.12 Important Examples of Random Processes 102  
        2.12 Exercises 104  
           2.12.1 Problems 104  
  PART II. MODELLING 109  
     3. Optimisation and Least Squares Estimation 111  
        3.1 Optimisation Theory 111  
        3.2 Optimisation Methods in Digital Filter Design 113  
        3.3 Least Squares Estimation 117  
        3.4 Least Squares Maximum Likelihood Estimator 119  
        3.5 Linear Regression - Fitting Data to a Line 120  
        3.6 General Linear Least Squares 121  
        3.7 A Ship Positioning Example of LSE 122  
        3.9 Measure of LSE Precision 130  
        3.10 Measure of LSE Reliability 131  
        3.11 Limitations of LSE 132  
        3.12 Advantages of LSE 132  
        3.13 The Singular Value Decomposition 133  
           3.13.1 The Pseudoinverse 134  
           3.13.2 Computation of the SVD 134  
        3.14 Exercises 138  
           3.14.1 Problems 138  
     4. Parametric Signal and System Modelling 141  
        4.1 The Estimation Problem 142  
        4.2 Deterministic Signal and SystemModelling 143  
           4.2.1 The Least Squares Method 144  
           4.2.2 The Padé Approximation Method 146  
           4.2.3 Prony’s Method 149  
           4.2.4 Autocorrelation and Covariance Methods 155  
        4.3 Stochastic Signal Modelling 159  
           4.3.1 Autoregressive Moving Average Models 159  
           4.3.2 Autoregressive Models 161  
           4.3.3 Moving Average Models 162  
        4.4 The Levinson-Durbin Recursion and Lattice Filters 163  
           4.4.1 The Levinson-Durbin Recursion Development 164  
           4.4.2 The Lattice Filter 168  
           4.4.3 The Cholesky Decomposition 171  
           4.4.4 The Levinson Recursion 173  
        4.5 Exercises 176  
           4.5.1 Problems 176  
  PART III. CLASSICAL FILTERS and SPECTRALANALYSIS 179  
     5. OptimumWiener Filter 181  
        5.1 Derivation of the Ideal Continuous-time Wiener Filter 182  
        5.2 The Ideal Discrete-time FIR Wiener Filter 184  
           5.2.1 General Noise FIR Wiener Filtering 186  
           5.2.2 FIRWiener Linear Prediction 187  
        5.3 Discrete-time Causal IIR Wiener Filter 189  
           5.3.1 Causal IIR Wiener Filtering 191  
           5.3.2 Wiener Deconvolution 192  
        5.4 Exercises 193  
           5.4.1 Problems 193  
     6. Optimum Kalman Filter 195  
        6.1 Background to The Kalman Filter 195  
        6.2 The Kalman Filter 196  
           6.2.1 Kalman Filter Examples 203  
        6.3 Kalman Filter for Ship Motion 207  
           6.3.1 Kalman Tracking Filter Proper 208  
           6.3.2 Simple Example of a Dynamic Ship Model 211  
           6.3.3 Stochastic Models 214  
           6.3.4 Alternate Solution Methods 214  
           6.3.5 Advantages of Kalman Filtering 215  
           6.3.6 Disadvantage of Kalman Filtering 215  
        6.4 Extended Kalman Filter 216  
        6.5 Exercises 216  
           6.5.1 Problems 216  
     7. Power Spectral Density Analysis 219  
        7.1 Power Spectral Density Estimation Techniques 220  
        7.2 Nonparametric Spectral Density Estimation 221  
           7.2.1 Periodogram Power Spectral Density Estimation 221  
           7.2.2 Modified Periodogram - Data Windowing 225  
           7.2.3 Bartlett’s Method - Periodogram Averaging 227  
           7.2.4 Welch’s Method 228  
           7.2.5 Blackman-Tukey Method 230  
           7.2.6 Performance Comparisons of Nonparametric Methods 231  
           7.2.7 Minimum Variance Method 231  
           7.2.8 Maximum Entropy (All Poles) Method 234  
        7.3 Parametric Spectral Density Estimation 237  
           7.3.1 Autoregressive Methods 237  
           7.3.2 Moving Average Method 240  
           7.3.3 Autoregressive Moving Average Method 241  
           7.3.4 Harmonic Methods 241  
        7.4 Exercises 245  
           7.4.1 Problems 245  
  PART IV. ADAPTIVE FILTER THEORY 247  
     8. Adaptive Finite Impulse Response Filters 249  
        8.1 Adaptive Interference Cancelling 250  
        8.2 Least Mean Squares Adaptation 252  
           8.2.1 Optimum Wiener Solution 253  
           8.2.2 The Method of Steepest Gradient Descent Solution 255  
           8.2.3 The LMS Algorithm Solution 257  
           8.2.4 Stability of the LMS Algorithm 259  
           8.2.5 The Normalised LMS Algorithm 261  
        8.3 Recursive Least Squares Estimation 261  
           8.3.1 The Exponentially Weighted Recursive Least Squares Algorithm 262  
           8.3.2 Recursive Least Squares Algorithm Convergence 265  
           8.3.3 The RLS Algorithm as a Kalman Filter 266  
        8.4 Exercises 267  
           8.4.1 Problems 267  
     9. Frequency Domain Adaptive Filters 269  
        9.1 Frequency Domain Processing 269  
           9.1.1 Time Domain Block Adaptive Filtering 270  
           9.1.2 Frequency Domain Adaptive Filtering 271  
        9.2 Exercises 278  
           9.2.1 Problems 278  
     10. Adaptive Volterra Filters 279  
        10.1 Nonlinear Filters 279  
        10.2 The Volterra Series Expansion 281  
        10.3 A LMS Adaptive Second-order Volterra Filter 281  
        10.4 A LMS Adaptive Quadratic Filter 283  
        10.5 A RLS Adaptive Quadratic Filter 284  
        10.6 Exercises 286  
           10.6.1 Problems 286  
     11. Adaptive Control Systems 289  
        11.1 Main Theoretical Issues 290  
        11.2 Introduction to Model-reference Adaptive Systems 292  
           11.2.1 The Gradient Approach 293  
           11.2.2 Least Squares Estimation 295  
           11.2.3 A General Single-input-single-output MRAS 296  
           11.2.4 Lyapunov’s Stability Theory 299  
        11.3 Introduction to Self-tuning Regulators 302  
           11.3.1 Indirect Self-tuning Regulators 304  
           11.3.2 Direct Self-tuning Regulators 305  
        11.4 Relations between MRAS and STR 306  
        11.5 Applications 307  
  PART V. NONCLASSICALADAPTIVE SYSTEMS 309  
     12. Introduction to Neural Networks 311  
        12.1 Artificial Neural Networks 311  
           12.1.1 Definitions 312  
           12.1.2 Three Main Types 312  
           12.1.3 Specific Artificial Neural Network Paradigms 314  
           12.1.4 Artificial Neural Networks as Black Boxes 315  
           12.1.5 Implementation of Artificial Neural Networks 316  
           12.1.6 When to Use an Artificial Neural Network 317  
           12.1.7 How to Use an Artificial Neural Network 317  
           12.1.8 Artificial Neural Network General Applications 318  
           12.1.9 Simple Application Examples 319  
        12.2 A Three-layer Multi-layer Perceptron Model 322  
           12.2.1 MLP Backpropagation-of-error Learning 324  
           12.2.2 Derivation of Backpropagation-of-error Learning 325  
           12.2.3 Notes on Classification and Function Mapping 330  
           12.2.4 MLP Application and Training Issues 330  
        12.3 Exercises 332  
           12.3.1 Problems 332  
     13. Introduction to Fuzzy Logic Systems 335  
        13.1 Basic Fuzzy Logic 335  
           13.1.1 Fuzzy Logic Membership Functions 336  
           13.1.2 Fuzzy Logic Operations 337  
           13.1.3 Fuzzy Logic Rules 338  
           13.1.4 Fuzzy Logic Defuzzification 339  
        13.2 Fuzzy Logic Control Design 340  
           13.2.1 Fuzzy Logic Controllers 341  
        13.3 Fuzzy Artificial Neural Networks 344  
        13.4 Fuzzy Applications 345  
     14. Introduction to Genetic Algorithms 347  
        14.1 A General Genetic Algorithm 348  
        14.2 The Common Hypothesis Representation 349  
        14.3 Genetic Algorithm Operators 351  
        14.4 Fitness Functions 352  
        14.5 Hypothesis Searching 352  
        14.6 Genetic Programming 353  
        14.7 Applications of Genetic Programming 354  
           14.7.1 Filter Circuit Design Application of GAs and GP 355  
           14.7.2 Tic-tac-to Game Playing Application of GAs 356  
  PART VI. ADAPTIVE FILTER APPLICATION 359  
     15. Applications of Adaptive Signal Processing 361  
        15.1 Adaptive Prediction 362  
        15.2 Adaptive Modelling 364  
        15.3 Adaptive Telephone Echo Cancelling 365  
        15.4 Adaptive Equalisation of Communication Channels 366  
        15.5 Adaptive Self-tuning Filters 368  
        15.6 Adaptive Noise Cancelling 368  
        15.7 Focused Time Delay Estimation for Ranging 370  
           15.7.1 Adaptive Array Processing 371  
        15.8 Other Adaptive Filter Applications 372  
           15.8.1 Adaptive 3-D Sound Systems 372  
           15.8.2 Microphone arrays 373  
           15.8.3 Network and Acoustic Echo Cancellation 374  
           15.8.4 Real-world Adaptive Filtering Applications 375  
     16. Generic Adaptive Filter Structures 377  
        16.1 Sub-band Adaptive Filters 377  
        16.2 Sub-space Adaptive Filters 380  
           16.2.1 MPNN Model 382  
           16.2.2 Approximately Piecewise Linear Regression Model 384  
           16.2.3 The Sub-space Adaptive Filter Model 386  
           16.2.4 Example Applications of the SSAF Model 388  
        16.3 Discussion and Overview of the SSAF 392  
  References 395  
  Index 403  
  More eBook at www.ciando.com 0  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz